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Summary

Comparative genomic analysis as a tool for locating novel

functional elements in D. melanogaster

Matthew Garrett

This thesis explores the use of comparative genomics techniques as a method

for aiding the location of novel functional elements in D. melanogaster. The ge-

nomic era has brought with it a large number of techniques for predicting the

location and identity of a range of functional elements, from transcription fac-

tor binding sites to protein coding genes. The primary difficulty associated

with these methods is determining whether a prediction is genuine or a false

positive. Comparative genomics makes use of the assumption that functional

elements will be more evolutionarily constrained than non-functional ones, al-

lowing the validation of predictions by examining the degree to which they are

conserved.

The thesis starts with the examination of a dataset (Ma, unpublished re-

sults) representing the sequences of expressed small RNAs in D. melanogaster.

After an examination of the quality of the sequences and what parameters are

appropriate for its post-processing, it is used to identify novel tRNA genes

which are then validated by comparative analysis. The degree of conservation
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of a set of putative microRNAs earlier identified using a similar technique is

then examined and used to determine the probability that the dataset repre-

sents genuine microRNAs.

Further investigation is carried out into the conservation of a specific spa-

tial arrangement of genes within the genome with the aim of determining

whether it is associated with functional relationships. Finally, the conserva-

tion of elements of the secondary structure of mRNA molecules is examined

in an attempt to identify further genes with a specific subcellular oocyte lo-

calisation pattern during development: predictions from this are examined

experimentally.

Throughout the thesis, comparative analysis is used to identify predictions

that appear likely to be functional and worthy of further study. The availability

of the genomes of 12 different species of Drosophila allows this to be achieved

in a high level of detail, providing insight into a range of functional aspects of

the D. melanogaster genome.
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Chapter 1

Introduction

The genomics era arguably began in 1972, with the sequencing of the bacterio-

phage MS2 coat protein gene (Min Jou et al., 1972). By 1976 MS2 had had its

RNA genome entirely sequenced (Fiers et al., 1976), becoming the first organ-

ism with a known genome sequence. Bacteriophage Phi X 174 became the first

complete DNA genome to be sequenced in 1977 (Sanger et al., 1977). More

complex genomes took significantly longer to produce – Haemophilus influen-

zae was the first free-living organism to be entirely sequenced (Fleischmann

et al., 1995), but progress since then has been rapid and aided by advances in

sequencing technology.

Genomic sequencing is now sufficiently fast and cheap that Genbank (Ben-

son et al., 2007) now contains over 81 gigabases of sequence from over 77 mil-

lion individual sequences. This poses a significant problem. How can mean-

ingful insights be drawn from this quantity of data? An analogy may be drawn

with attempting to determine what makes a human simply by examining a

single individual. By laborious examination of each component of the human

body, it might be possible to identify which parts are necessary for survival
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and which are more cosmetic. Having a second human would reduce the

amount of work required, as anything not common between the two would

be less likely to be important. Given a sufficiently large number of humans,

it would be possible to come up with a reasonably solid set of core aspects

of “humanness”, while noting that other features (like skin and hair colour,

height and facial structure) vary widely.

Comparative genomics applies this approach to genomic sequences. Func-

tional aspects of the genome should be subject to positive selection pressure,

while the rest of the genome will be under neutral selection. Given adequate

time for divergence to occur, conserved sequence is highly likely to be func-

tional. When applied to groups of species, this provides a simple yet power-

ful mechanism for identifying functional sequences. By looking for well con-

served sequences across a range of organisms, it is possible to come to conclu-

sions about the fundamental genomic features that are required for life, with

the distance over which a sequence is conserved giving an indication as to

when in evolution it developed.

This thesis describes various approaches to identifying potentially func-

tional aspects of the D. melanogaster genome, coupling this to comparative

analysis to judge the effectiveness of the identification. Various techniques

have been developed to aid this effort..

1.1 Comparative biology

The publication of the complete amino acid sequence of bovine insulin (Ryle

et al., 1955) was a groundbreaking event in biology, although even the most

optimistic researcher could hardly have imagined its long-term impact on sci-
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ence. A companion paper (Brown et al., 1955) discussed the sequence vari-

ations between the fully-sequenced bovine insulin and partially sequenced

porcine and ovine insulin. The high level of sequence conservation provided

insight into the functional nature of insulin, with only three residues showing

variation between the studied species.

Perhaps insulin’s greatest weakness in this burgeoning field was its ab-

sence outside the animal kingdom. When the sequence of equine cytochrome

C was published (Margoliash et al., 1961), it was rapidly followed by human

(Matsubara and Smith, 1962), pig, rabbit and chicken (Chan et al., 1963), tuna

(Kreil, 1965) and yeast (Narita et al., 1963). This culminated in perhaps the

first modern comparative sequence paper in the form of Margoliash (1963),

containing some prescient wisdom:

Similar considerations must be taken into account in attempts to

ascribe functional importance to certain areas of the primary struc-

ture of a set of homologous proteins solely on the basis of their

invariance over a large range of the evolutionary scale. Thus, for

example, the available information does not make it possible to de-

cide whether a section, such as that extending from residue 70 to

residue 80, has remained invariant as a result of strict functional re-

quirements or whether such constancy merely reflects a particular

stability of the genetic material corresponding to this sequence. In-

deed, the presence of apparent genetic “hot spots” implies genetic

“cold spots.”

By the end of the 60s, further sequence comparisons were taking place.

An early analysis was the simultaneous publication of the structure of horse

haemoglobin (Perutz et al., 1960) and sperm whale myoglobin (Kendrew et al.,
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1960). The fortuitous choice of sperm whales1, coupled with a ready desire to

identify the structure in human tissue, meant that comparative sequence-level

analysis followed quickly. Watson and Kendrew (1961) compared the amino-

acid level sequence of human haemoglobin and whale myoglobin, and in short

order the whale sequence was being used to support analysis of the human

sequence (Hill et al., 1969).

Of course, inter-species analysis was only part of the story. Before any pro-

tein had been completely sequenced, Linus Pauling and Harvey Itano had

demonstrated that a single amino acid substitution could lead to sickle cell

anemia (Pauling and Itano, 1949). Itano continued work in this field, demon-

strating that a wide range of diseases could be explained by small mutations

in haemoglobin (Itano et al., 1956). Comparative analysis across species would

continue to provide insight into the core functionality of genetic elements, but

analysis between individuals of the same species would provide great insight

into what made people different – for better or for worse.

By the middle of the 1960s, enough sequences were being produced that

it became necessary to start providing some level of organisation. Margaret

Dayhoff and Richard Eck worked to produce the first edition of the Atlas of

Protein Sequence in 1965, consisting of 65 sequences. Analysis of related se-

quences from distantly related organisms provided insight into the mecha-

nisms involved in protein evolution, charting a plausible method for the de-

velopment of ferredoxin from a more primitive but related sequence (Eck and

Dayhoff, 1966).

1Human tissue contained too little myoglobin to form large crystals. Whales carry signif-
icantly more in order to allow them to remain submerged for longer periods of time, which
simplified the crystal analysis
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1.2 Genomic sequencing technology – from gels to

commodity

Analysis of protein sequences inevitably resulted in some variation being missed

due to the many-to-one mapping of nucleotide sequences to amino acids. Fur-

ther, it meant that analysis of non-coding sequences was impossible. Using

comparative biology to study the underlying mechanisms would require the

sequencing of the genome itself.

The first DNA sequencing occurred in the late 1960s, when Wu and Kaiser

(1968) determined the composition and a subset of the sequence of the com-

plementary single-stranded ends of the phage λ DNA. This was achieved by

adding DNA polymerase and individual radio-labeled bases to a solution of

purified phage DNA. By determining which base was incorporated into the se-

quence it could be inferred that the template carried the complementary base.

The phage DNA could then be purified and the experiment repeated to deter-

mine the next base.

This approach had the significant drawback that it could only be used on

single-stranded sections of DNA that were adjacent to double-stranded se-

quences. The use of oligonucleotides as primers (Padmanabhan and Wu, 1972)

made it possible to initiate sequencing at arbitrary points along the DNA, but

at this stage sequencing was still a laborious and time-consuming task.

A breakthrough came with the development of the “plus and minus” tech-

nique for sequencing (Sanger and Coulson, 1975). This built on the use of

primers as initiation sites for sequencing, but in contrast to the previous method

of adding individual nucleotide the sequences were provided with all four and

allowed to grow slowly. The reactions would then be stopped and sampled,
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with each sample containing a collection of sequences of random lengths. A

second round of polymerase activity could then be started, this time in the

presence of a radiolabeled form of only one nucleotide. These samples could

then be run on an acrylamide gel, with the bands corresponding to sequences

which incorporated a labeled base in the second round of polymerisation. This

allowed sequences of up to approximately 50 bases to be identified in one pro-

cedure, making it viable to sequence bacterial genomes.

The primary disadvantage to this approach was that runs of identical bases

would result in a single band. Identifying the number of bases that each band

corresponded to was therefore a task requiring a certain degree of judgment

and was the major factor preventing longer sequences from being accurately

identified. A later adaptation of the protocol (Sanger et al., 1977) rectified this

issue by utilising labeled bases that lacked the 3’ -OH group required for ex-

tension of the double stranded region. The polymerase reaction would be ter-

minated at the point of inclusion of one of these labeled bases, resulting in a

much sharper band and practical sequencing of up to around 400 bases.

One of the problems making it impractical to automate the entire sequenc-

ing process was the use of radiolabeled nucleotides to terminate the sequences.

Smith et al. (1986) described the use of fluorescently labeled molecules, with

each nucleotide fluorescing a different colour. This avoided the need to per-

form multiple electrophoresis runs and the risk of radioactive contamination,

permitting the construction of machines that could perform a sequencing run

in a little over 12 hours. By using large numbers of these machines in concert

it became possible to sequence entire organisms in only a few years.

Up until this point, the general approach to sequencing had been to se-

quence one region of the genome and then use that sequence as the starting
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point to design primers to sequence the next section of the genome. Although

shotgun sequencing had been described in the early years of sequencing (An-

derson, 1981), it wasn’t until the wider availability of high-powered comput-

ing resources in the 1990s that it became a preferred method of sequencing.

Genomic DNA could be fragmented and cloned into plasmids of known se-

quence. These provided known starting points for the priming of the reaction

and so could be sequenced without any manual primer design. The sequences

thus obtained could then be reassembled by looking for overlapping regions,

gradually building up the sequence of the entire genome.

Despite advances in automation and parallelisation, sequencing techniques

have remained fundamentally identical to that developed by Sanger in the

1970s. The 454 pyrosequencing technique (Margulies et al., 2005) was the first

of a new wave of massively parallel sequencing techniques. Short DNA se-

quences are derived by shearing genomic DNA and linking them to the sur-

face of a bead. They are then amplified, resulting in beads covered in a large

number of identical sequences. These beads are mounted on a slide and ex-

posed in turn to each of four labeled nucleotides. As the nucleotides are incor-

porated by the polymerase, pyrophosphate is released and this in turn leads

to an enzyme-mediated burst of light. By recording the wells which release a

burst for each nucleotide it is possible to determine the template sequence.

The 454 approach suffers from the same drawback as Sanger’s original ap-

proach. If a run of identical bases occurs in the template sequence, multiple

nucleotides can be incorporated almost instantaneously. Unfortunately quan-

tification of the bursts of light from multiple incorporations isn’t especially

accurate, especially for runs of more than four bases.

An approach more similar to the later Sanger technique is used in the
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Solexa (now Illumina) sequencing method (Bennett et al., 2005). Fragments

of template DNA are ligated to a linker sequence which attaches them to a

slide. After several rounds of amplification, each spot contains a large number

of identical template sequence. Fluorescently labeled nucleotides are then in-

corporated – however, unlike the 454 approach, they are modified and block

further extension of the sequence. After the labeled nucleotides have been

read, the fluorescent label is cleaved off the nucleotide and extension can oc-

cur once more. This prevents the problems associated with runs of identical

residues that can occur with the 454 approach, but at the cost of a reduction in

the length of individual sequences. Nevertheless, a single Solexa sequencing

experiment is capable of producing up to 10Gb of sequence.

High-throughput sequencing techniques provide a rapid way of obtaining

deeper sequence coverage. Traditional sequencing methods may be used to

generate a rough scaffold adequate for aligning the shorter reads. In turn, the

high-throughput techniques may be used to generate sufficient coverage of a

region to provide confidence that the sequence is correct. As a consequence,

even entirely de novo sequencing of an organism may take significantly less

time and cost than today while achieving better coverage and lower error rate.

The level of coverage and relative economic viability of these high-throughput

techniques provides an intriguing possibility for functional element discov-

ery. Regions that are tightly conserved between two closely related species

are more likely to be functional, but this approach provides little aid in locat-

ing the functional elements that distinguish the two species. However, given

a sufficiently large sample set, similar levels of variance may be expected to

be observed within the gene pool of a single species thus allowing the identi-

fication of species-specific functional elements. High-throughput sequencing
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techniques indicate that such an experiment may be economically viable in the

near future.

1.3 Prior uses of comparative genomics

The concept of locating regulatory elements by comparative sequence analysis

was introduced in Tagle et al. (1988). By aligning orthologous sequences from

related species, functional sequences could be identified by the “footprints” of

higher conservation they left behind. This phylogenetic footprinting hinged

on the fact that functional sequences are more likely to be under selection

pressure to retain their primary sequence. This analysis successfully identified

several novel regulatory elements, demonstrating the ability of comparative

genomics to locate functional sequences.

An analysis of several genes in the mouse (Hardison et al., 1997) was used

as an argument in favour of sequencing the mouse genome, opening the door

to full-genome comparative analysis between two complex organisms. The

release of the mouse genome sequence (Waterston et al., 2002) provided the

opportunity to use this type of analysis to improve the annotation of both

genomes. Predicted genes that were present in mouse but not in humans of-

ten turned out to be spurious predictions or to be derived from viral inser-

tions. Similarly, many predictions that occurred outside regions of synteny

were determined to be pseudogenes. tRNA predictions were also validated by

measuring their degree of conservation, this being significantly higher in func-

tional tRNAs than in tRNA-like insertion elements. As with previous smaller-

scale analyses, regions of higher than expected conservation in upstream re-

gions were used to identify regulatory regions. However, while greater than
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average, the degree of conservation of regulatory regions was significantly

lower than of coding regions.

Kellis et al. (2003) described the use of comparative genomics as a method

for improving understanding of functional elements in S. cerevisiae. By align-

ing the S. cerevisiae genome with three others (S. paradoxus, S. mikatae and S.

bayanus, divergent over a range of 5-20 million years), regions of conserva-

tion could be examined and used to identify whether a region was likely to

be functional or not. This could be related to existing annotation in order to

gain improved accuracy. Some 500 existing open reading frames were deter-

mined to be spurious by noting that orthologous regions of the other genomes

had accumulated frameshifts and stop codons, indicating that the region was

not under selective pressure to retain a coding sequence and strongly suggest-

ing that there was no functional transcript. Gene start and end points, introns

and new ORFs were annotated via similar means, resulting in alterations to

approximately 15% of existing gene annotations.

This analysis demonstrated the power of comparative genomics in validat-

ing existing predictions. Not only were putative genes validated (or removed),

the comparative analysis provided extra resolution in determining the extents

of genes. It even suggested that some genes that had previously been thought

to have been experimentally tested didn’t exist. Instead, deletions that had

been interpreted as impairing the functionality of a gene had probably been

disrupting the promoter region of genuine adjacent genes.

This analysis was not limited to gene annotation. By examining the conser-

vation of motifs by three different metrics (conservation in intergenic regions,

higher levels of conservation in intergenic regions than in genic regions, and a

significant difference between the levels of conservation upstream and down-
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stream of genes), it was demonstrated that the majority of known regulatory

elements could be located along with a number of novel elements.

It is likely that the analysis of Kellis et al benefited from the evolutionary

closeness of the species analysed. An analysis including more distantly related

species (Cliften et al., 2003) proved less sensitive, which could be interpreted

in two ways. The first argument would be that any sequences conserved over

the larger evolutionary distance are more likely to be functional. The alterna-

tive interpretation is that the enhanced divergence makes it more likely that

alternative regulatory mechanisms will have evolved, reducing the probabil-

ity that elements will be located this way. This was demonstrated by Liu et al.

(2004), who found that the level of conservation of the known regulator ele-

ments between S. cerevisiae and S. pombe was no better than that of randomly

selected intergenic sequence.

This is perhaps the primary risk in comparative genomics – that certain

areas of the genome may be conserved by chance. Increasing the distance be-

tween the species examined increases the time available for the sequences to

have diverged, reducing the probability that sequences under neutral selec-

tion will still bear a strong resemblance. The disadvantage of this approach

is that it reduces the ability of comparative analysis to identify elements that

have evolved more recently than the divergence between the organisms being

analysed – the lack of conservation may be due to the sequence not being func-

tional, or alternatively its absence may be one of the fundamental differences

between the organisms being examined.

A refinement of phylogenetic footprinting, phylogenetic shadowing, was

proposed by Boffelli et al. (2003). This method takes advantage of the diver-

gence within a group of closely related species, providing the same level of
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resolution without requiring the same degree of historical divergence. Multi-

ple independently evolving (but closely related) organisms will show a sim-

ilar level of sequence diversity as a comparison between two more distantly

related species. Estimates suggest that the sequencing of 4 or 5 closely related

(ie, within around 40 million years of each other) species would provide an

adequate level of intra-group diversity to be able to identify the majority of

functional conservation, and hence provide a means of identifying the major-

ity of regulatory elements while minimising the probability that conservation

is due to chance alone.

Clark et al. (2003) went further, suggesting that even further detail could be

provided by a “ladder and constellation” approach. Here, divergence points

would be picked (the “rungs” of the “ladder”) and multiple species sequenced

at each point (the “constellations”). In this model, the divergence is as wide

as in a phylogenetic shadowing approach but extra detail is available at the

clusters of closely related species. This gives more insight as to whether di-

vergence is accidental, or a functional alteration in a specific subgroup of the

species examined. As a result, more information about functional but rapidly

changing elements of the genome can be obtained.

A consequence of this proposal was the sequencing of an additional 10

species of Drosophila, joining the already sequenced D. melanogaster (Adams

et al., 2000) and D. pseudoobscura (Richards et al., 2005). These represent a pe-

riod of roughly 50-60 million years of divergence between the most distantly

related species, down to under a million years for the most closely related.

Though only recently completed (Clark et al., 2007), these have already been

used to obtain a better understanding of functional elements (Stark et al., 2007).
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1.4 Sequence alignment techniques

Comparative sequence analysis involves being able to identify the analogous

sequences in multiple species. The process of matching sequences with each

other is known as sequence alignment. There are two main approaches used

for this. The first attempts to align either the entire sequence, or significant

proportions thereof and is therefore known as global alignment. It is typified

by the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970). This

consists of a matrix of alignment scores – positive for identical bases being

aligned, negative for mismatches or introduced gaps. A dynamic program-

ming approach is then taken to find the alignment that provides the optimal

overall score. A variation on this, the Smith-Waterman algorithm (Smith and

Waterman, 1981), differs primarily in scoring mismatches as 0 rather than a

negative number. This approach allows for shorter areas of high similarity to

be aligned even if that would otherwise result in a lower score for the overall

alignment. This approach is therefore known as local alignment.

The preferred approach for sequence alignment depends on the research

being performed. Given two gene regions from different species, a global

alignment will give a strong overview of the genomic changes caused by evo-

lutionary divergence – for example, a gene duplication event may be indicated

by the introduction of a gap in one sequence that covers the entirety of the du-

plicate gene. However, if segments of the duplicate bear greater similarity to

the ancestral gene, a local alignment may introduce additional gaps in order

to provide a better indication as to these conserved elements. An example is

shown in figure 1.1.

The majority of the research in this thesis consists of looking at small se-
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Species 1

Species 2

Species 1

Species 2

Global alignment

Local alignment

Single gap Alignment optimised to
minimise gaps, not maximise
sequence similarity

   Duplicate genes

    Two gaps

Sequence aligned with ancestral duplicate
due to greater homology, despite extra gap being
introduced

Figure 1.1: Comparison of global versus local alignments. A duplication event
in species 2 has caused a new gene to be inserted. It has diverged over time,
leaving the original gene with greater homology to the ancestral gene present
in species 1. A global alignment will introduce a single gap, allowing visu-
alisation of the duplication event as shown in the upper comparison. A local
alignment may introduce multiple gaps in order to align segments of the du-
plicate gene that bear closer homology to the ancestral gene, as shown in the
lower comparison
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quences that are expected to be well conserved. Local alignment lends itself

well to this form of investigation. Small sequences are prone to rearrange-

ments in the “churn” of genetic divergence. Outside coding regions, there

is little pressure on conservation of the sequence surrounding functional se-

quences. Global alignment would therefore tend to result in a failure to locate

the conserved elements, leaving them poorly aligned in order to favour the

alignment of larger conserved features.

The most commonly used local alignment tool is BLAST (Altschul et al.,

1997). BLAST implements an algorithm similar to Smith-Waterman, but with

additional heuristic steps to reduce the number of operations required. This

means that BLAST is not guaranteed to give an optimal alignment. However,

as a consequence it is able to perform around 50 times faster than a pure Smith-

Waterman implementation.

1.5 Thesis overview

Chapter 2 introduces a dataset derived from high throughput sequencing of

short RNAs from D. melanogaster embryos (Ma, unpublished results). The

quality and error types of the sequencing reads are critically evaluated in order

to identify the appropriate processing necessary for generating high-quality

alignments with genomic sequences. This provides the basis for the following

two chapters.

Chapter 3 describes a novel approach for identification of genetic elements

by examining their distinctive expression profiles derived from the previously

discussed alignments. This is used to locate unannotated tRNAs and vali-

date the predictions of existing tRNA scanning applications, with comparative
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analysis used to validate the newly-discovered functional elements.

Chapter 4 examines the level of conservation of a set of microRNAs earlier

identified earlier using a profile scanning technique similar to that discussed

in chapter 3, along with additional criteria (Ambros et al. (2003), Ma, unpub-

lished results). This conservation is used to evaluate the quality of the pre-

diction technique and discuss potential mechanisms by which the observed

conservation could have occurred.

Chapter 5 investigates a different kind of potentially functional relationship

by examining conservation of gene nesting arrangements over the sequenced

species, and uses this to estimate the rate of change of nesting arrangements.

An evaluation of the significance of conserved nesting arrangements is also

made.

Chapter 6 attempts to use conservational analysis as a tool for examining a

relatively unexplored class of functional elements. Potentially functional RNA

structure with a role in mRNA localisation are identified with novel technique

for describing RNA structure, and a set of putatively localised genes identified.

Chapter 7 describes the application of experimental techniques in an in an

attempt to validate the predictions made in chapter 6.
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Chapter 2

Analysis of the Solexa

high-throughput sequencing

method

The raw data used for this analysis was provided by Karen Ma
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2.1 Introduction

Microarrays have developed greatly since the early days of cDNAs being blot-

ted onto filter paper (as introduced by Kulesh et al. (1987)) and small-scale

gene expression examinations (such as Schena et al. (1995)). However, even

when used to examine entire genomes (Lashkari et al., 1997), microarrays face

certain fundamental issues – the difficulty in quantifying signals and difficul-

ties with probe specificity and sensitivity. If the probes are targeted, then there

must be some prior knowledge of the sequences in advance. Whole genome

microarrays reduce this problem by containing probes derived from sequences

regularly spaced across the whole genome, but the gaps in coverage make it

difficult to locate small functional sequences.

Microarrays are therefore not an ideal tool for de novo functional element

discovery. The ability to identify the actual gene expression of a cell at a given

point in time would provide the potential for making predictions based on

knowledge of which sequences are actually expressed.

The increasing availability of ultra-high throughput sequencing techniques

such as those from 454 Life Sciences (Margulies et al., 2005) and the Solexa

method from Illumina (Illumina, 2006) are able to provide this. The speed

and number of samples that can be sequenced allows the determination of the

sequence of RNA extracted from the cell and subject to minimal processing.

In principle, the sensitivity allows for identification of sequences that are ex-

pressed even in very low copy numbers.

In an attempt to identify novel small RNAs in D. melanogaster, a dataset was

generated by extracting RNA from embryos, size selecting it for sequences of

between 20 and 30 bases, reverse-transcribing the sequences into DNA and
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Extract RNA from tissue

Run RNA on gel and size select
to the desired sample length

Ligate 3’ adapters

Run RNA on gel and size select to
the original sample size plus

the adapter length

Ligate 5’ adapters

Run RNA on gel and size select
as before

RT-PCR the size-selected RNA to
obtain sequencing material

Sequence DNA

Figure 2.1: Summary of source material preparation. More detailed discussion
may be found in Appendix A.

then sequencing them via the Solexa method (Ma, unpublished results). The

protocol for obtaining the source material is described in Appendix A, with

an overview in figure 2.1. This chapter describes the initial analysis of the

sequences, with the emphasis on determining the error rate in order to allow

the maximum number of sequences to be confidently aligned to the reference

genome.

The Solexa sequencing method

At the time of this work the Solexa sequencing process was designed for short

sequences of DNA, up to around 30 bases1. This may be achieved by either

size selection or fragmenting longer sequences. Known adapter sequences are

ligated to the 5’ and 3’ ends of the DNA and these are denatured into single

stranded fragments which are hybridised to primers covalently attached to

flow cells. Amplification of the hybridised molecules occurs through a PCR-

1More recent work has allowed this to be extended to over 100 bases
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like reaction in which all the primers are covalently attached to the flow cell.

A primer corresponding to the adapter sequence is then added to the flow

cell and binds to the single stranded adapter at the unattached end of the se-

quence fragments. Labeled nucleotides that incorporate reversible terminators

are then added, along with DNA polymerase. These are then incorporated into

the sequence. The cell is then excited by laser light and the incorporated base

identified. This allows the first base of the sequence to be identified. The ter-

minator is then cleaved and the process of incorporation, measurement and

cleavage/regeneration repeated to build up the complete sequence read.

Sources of error in the generation of the dataset

The results of the Solexa sequencing process may contain two classes of error

– errors generated in the preparation stages and then correctly sequenced, and

errors generated in the sequencing process itself. While it is the total error that

is of most interest when it comes to interpreting the results, it is important to

determine the relative proportions of the error sources in order to understand

how the data can be used in further analysis.

To be able to define the importance of each of these two influences, it is

necessary to posses known reference sequences. Two ideal candidates were

identified. A large body of the sequenced material corresponded to the 2S

ribosomal RNA, a 30 base sequence generated by cleavage of the 5.8S rRNA

in Drosophila (Jordan et al., 1976). This was clearly derived from the original

source material, and therefore had undergone every stage of the preparation

process.

The second candidate sequence was that of the 3’ adapter ligated to the end

of the source material. This 21-base sequence does not occur anywhere within
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Figure 2.2: Diagrammatic representation of the Solexa sequencing process. Im-
age copyright Illumina, Inc
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the D. melanogaster genome, but is instead a synthetic oligomer of a sequence

provided by Illumina. If the RNA fragment is shorter than the read length,

then the sequencing process will read through the entire fragment and start

sequencing this 3’ adapter. The raw material was size selected to be smaller

than 30 bases, thereby making it likely that many of the original sequence

fragments would be less than the 27 base read length. As a result, it would

be expected that there be evidence of adapter sequence in many cases.

The 2S sequence is therefore suitable for use in determining the error rate

of the entire process, with the adapter sequence being suitable for approxi-

mating the error rate of the sequencing itself. The difference between these

rates should provide an estimate of the amount of error introduced during the

preparation process.

Solexa provide per base quality estimates. This is an estimate of the prob-

ability of the base call being incorrect, and is based on a modified version of

the scoring used by the Phred scorer used in conventional sequencing (Ew-

ing et al., 1998). Rather than Phred’s Q = −10log10(Pe), the Solexa scoring is

Q = 10log10((1−Pe)/Pe) withQ being the quality score and Pe representing the

probability of error. At higher quality scores (above 15 or so), the two equa-

tions give almost identical answers. The Solexa equation, however, provides

a greater dynamic range and thereby makes it easier to differentiate between

lower scores, representing lower qualities.

Unfortunately the data set examined did not include calibrated quality

scores – that is, while quality scores were present, they did not provide any

sort of absolute error rate. Instead, a lower quality value merely indicated that

the probability of a base call being correct was lower than if there had been a

higher quality score.
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As a result, this analysis served three purposes. Firstly, it allowed an esti-

mate of the error rate induced by the sequence preparation protocol. Secondly,

it allowed an estimate of the error rate inherent in the sequencing itself. Finally,

it allowed an estimate of the appropriate cutoff level when choosing which se-

quence data to trust in later stages of the analysis.
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2.2 Methods and results

The two sequences to be tested were as follows. The 2S sequence of

tgcttggactacatatggttgagggttgta

was retrieved from Genbank (accession number GI:8456). The adapter se-

quence of

tcgtatgccgtcttctgcttg

was supplied by Solexa. Sequences from the dataset with significant align-

ment to these reference sequences were then retrieved with Blast (Altschul

et al., 1997).

Each resulting dataset was then in turn analysed. A small perl applica-

tion was developed to perform a gapped Needleman-Wunsch (Needleman

and Wunsch, 1970) alignment between each of the sequences and the reference

sequence.The number of correct matches was recorded, as was the number of

incorrect matches. The number of correct and incorrect matches was noted for

each different quality value, along with the proportion of correct and incorrect

matches along the length of the sequence. These results were then tabulated

in tables 2.1 and 2.2.
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Quality Incorrect Correct Error rate
-5 73547 2 0.99
-4 198 242 0.45
-3 1346 1624 0.45
-2 3656 5882 0.38
-1 6479 13180 0.33
0 24679 48047 0.34
1 32816 83111 0.28
2 24793 111494 0.18
3 19715 159561 0.11
4 15448 208407 0.069
5 12433 274114 0.043
6 10561 377586 0.027
7 9145 485434 0.018
8 7411 569917 0.013
9 6572 654712 0.0099
10 5756 804638 0.0071
11 5303 840636 0.0063
12 5126 971377 0.0052
13 4952 1097206 0.0044
14 4110 1027841 0.0040
15 4095 1167798 0.0035
16 4171 1361613 0.0031
17 3253 1332981 0.0024
17 3982 1408511 0.0028
19 2343 1006091 0.0023
20 4281 1619149 0.0026
21 1635 732701 0.0022
22 4418 2064341 0.0021
23 2491 1290095 0.0019
24 2484 1096458 0.0023
25 3217 1207858 0.0027
27 4830 2482986 0.0019
30 249127 80299275 0.0031

Table 2.1: Correct and incorrect base calls for each quality value in sequences
with high-scoring alignments to the 2S reference sequence
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Quality Incorrect Correct Error rate
-5 13199 0 1
-4 8 35 0.19
-3 109 235 0.32
-2 318 792 0.29
-1 596 1665 0.26
0 4171 8650 0.33
1 3850 19091 0.17
2 2825 24426 0.10
3 2299 35483 0.060
4 1798 45566 0.038
5 1642 63385 0.025
6 1546 96551 0.016
7 1411 124961 0.011
8 1354 141606 0.0095
9 1366 170912 0.0080
10 1370 216368 0.0063
11 1305 224130 0.0058
12 1412 275127 0.0051
13 1535 326800 0.0047
14 1245 290238 0.0043
15 1442 326862 0.0044
16 1475 398383 0.0037
17 1392 351057 0.0039
18 1472 418960 0.0035
19 1061 246158 0.0043
20 1675 483111 0.0035
21 745 212099 0.0035
22 2209 600378 0.0037
23 1088 396530 0.0027
24 1044 368817 0.0028
25 1325 377289 0.0035
27 2056 695275 0.0029
30 73471 37557273 0.0020

Table 2.2: Correct and incorrect base calls for each quality value in sequences
with high-scoring alignments to the 3’ adapter reference sequence
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Figure 2.3: Per-base error rate for bases at each quality level

2.3 Discussion

Based on the high number of bases with Q30 scores from both sets of data, it is

possible to assign a tentative error rate to each step of the process. Examining

the values from the adapter-containing dataset, a reasonable estimate for the

raw error rate of sequence data flagged as high quality is 0.2%. The 2S data

suggests a figure of 0.3%. This difference is consistent with the hypothesis that

some extra error would be introduced during the preparation process.

These results were then examined to see if the error rate was continuous

over sequence length. Figures 2.4 and 2.5 show plots of error rate against po-

sition in the query sequence - ie, the position in the read that is being aligned.

Both figures 2.4 and 2.5 show a significant positive trend, indicating that

there is an increase in error rate towards the end of the sequence. Assuming

that a linear increase is a representative model of the error, we can approxi-
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quences. Linear regression provides a slope of 5.79 × 10−4 with a variance of
5.75× 10−10

mate that on average a base at the end of a 27 base read is some 6 times more

likely to be incorrect than a base at the beginning of the read. This represents

a relatively small absolute increase - the probability of error per base is still

less than 1%. This low rate suggests that the Solexa sequencing method is not

highly prone to losing synchronisation. The lac of accuracy of this estimate is

due to the difference in these values between the two datasets analysed. There

is no obvious explanation for these differences.

Figures 2.6 and 2.7 show the error rate per position in the reference se-

quence. An interesting observation is the presence of two large peaks in the 2S

data. The peak at position 14 can be easily explained. Of the 16 occurrences of

the 2S rRNA gene precursor in the D. melanogaster genome, 4 share the same

t to c point mutation. However, only around 1% of the expressed sequences
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Figure 2.7: Error rate plotted against position for aligned 3’ adapter sequences

contain evidence of this. This may indicate that these altered sequences have

been selected against and are expressed at a lower level during embryonic de-

velopment. Interestingly, the Genbank EST library provides no evidence for

this sequence. It is likely that previous sequencing methods have not been suf-

ficiently deep to distinguish between these seemingly genuine reads and se-

quencing errors. Attempting to align this sequence against other drosophilids

shows a similar polymorphism in D. willistoni (though missing the first base)

but nothing in any other species.

The peak at position 3 is less easily explained. The D. melanogaster sequence

provides no support for a mutation at this point. However, as shown in table

2.3, despite there being a significantly higher error rate at this position almost

all of the error can be assigned to c to t transitions. Discounting these, the er-

ror rate for this position would be no higher than in surrounding positions.
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Position A C G T
2 1500 1357 3889849 3582
3 1681 3896342 1812 62026
4 629 1582 675 3908891

Table 2.3: Number of reads with each base in the area surrounding position
three of the 2S rRNA sequence. Note the much increased error rate in position
3, along with the strong bias towards a c to t transition

Given the absence of any especially strong evidence for a significant bias in

miscallings, the parsimonious explanation is that this peak represents a gen-

uine divergence from the reference sequence.

The Ma dataset was generated from embryos collected from the Oregon R

strain of D.melanogaster, rather than the y[1]; cn[1] bw[1] sp[1] strain used in

the sequencing effort. Therefore it is reasonable to propose that the Oregon R

strain contains one or more copies of the 2S rRNA sequence with an additional

c to t transition at position three. This is consistent with cytosine deaminating

into uracil (cytosine being the least stable amino acid – Frederico et al. (1990))

without being corrected, with the uracil in turn being interpreted as a tyro-

sine during DNA replication. This could conceivably have occurred since the

development of this specific strain in the laboratory, as the reduced stress en-

vironment may mean that the loss in some functionality of a 2S rRNA might

not have a significant impact upon viability. D. ananassae shows a similar se-

quence (though with further mutations in the first two bases), demonstrating

the plausibility of this being a genuine polymorphism.

As well as validating the overall quality of the Solexa sequencing, the er-

ror data is important in order to determine the threshold at which the data is

trusted. This is necessary in order to allow the sequence reads to be aligned

against the genome with confidence. Choosing too low a threshold will re-
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sult in data containing errors which may then result in misalignments. Too

high a threshold will risk discarding too much correct sequence, resulting in

sequences that can now be aligned to multiple locations in the genome.

Two approaches may be taken to this analysis. The first is to treat the qual-

ity data as a classifier – that is, a means of telling whether a given base may be

trusted or not. The sole parameter of this classifier would be the quality level

threshold used to determine the threshold.

Figures 2.8 and 2.9 show plots of the true and false positive rate as the

quality threshold at which bases are discarded is varied, a graph known as a

receiver operating characteristic (or ROC) curve. In this case the true positive

rate indicates the proportion of incorrect bases that would be discarded at a

given threshold, while the false positive rate indicates the proportion of correct

bases that would be discarded. Both curves follow a similar shape, indicating

that the ability to use the quality scores to determine whether a base is correct

or not is fairly consistent across the two data sets. In both cases, the point at

which the true positive rate is no longer significantly increased by discarding

more bases (while the false positive rate is) corresponds to a quality threshold

of around 12. In other words, the classifier is most accurate between quality

scores of -5 and 12, at which point 40% of incorrect bases can be discarded

while discarding only 1% of correct bases. Higher quality scores provide less

power for differentiating between correct and miscalled bases in comparison.

However, this still leaves the problem of where on this line to place the

threshold. Choosing a higher threshold will save more correct data, but will

discard a smaller quantity of incorrect data. The appropriate cut-off point may

be aided by considering the information content of the sequences.

Each base in a sequence may have one of four different values. This may
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be considered to be 2 bits of information (22 = 4)2. A 25 base sequence would

therefore have 2 × 25, or 50 bits of information. In other words, there are 250

possible ways of writing a sequence of 25 bases.

The mean length of a sequence in the dataset after the removal of adapter

sequence is approximately 25 bases. The D. melanogaster genome contains

around 140 megabases, or approximately 227 bases. The expected number of

occurrences of a specific 25 base sequence in the genome3 is therefore 227/250,

or 2−23 (1.19 × 10−7). This is sufficiently small that finding a 25 base sequence

that correctly aligns is likely to be due to the sequence having been derived

from the genome, rather than having arisen by chance.

Determining the appropriate proportion of bases to discard is therefore in-

fluenced by the amount of information that will be lost in the process. Re-

moving a single base from a 25 base sequence will still leave 48 bits of data,

and will therefore have little impact upon the probability of correctly aligning

the sequence against the genome. As shown in table 2.4, setting the thresh-

old to 27 would result in the loss of approximately 23% of all good sequence.

This would translate to an average loss of 6 bases from each 25 base sequence,

reducing the information content to from 50 bits to 38 bits. At this level a

random sequence might be expected to be found 2−11 times in the genome,

or 4.88 × 10−4 – that is, after this clipping approximately one in 2048 25 base

sequences might be expected to align to the genome by chance rather than

because they originated from that location. 97% of sequences are 21 bases or

longer. At 21 bases, the loss of 23% of bases would result in a total length of
2This is dependent upon the frequency of all bases being approximately equal, as can be

seen with a simple thought experiment – if the genome was 99% C and G nucleotides, then
vast majority of bases would be either C or G. As a consequence, the information content of
most bases would be closer to 1. The true ratio of bases in D. melanogaster is around 56% A or
T nucleotides, a figure which does not alter these calculations to any significant extent

3Assuming random sequences

40



16 bases and an information content of 232, giving each sequence a one in 32

chance of aligning by chance.

This suggests that clipping at a quality threshold of 27 would result in be-

tween 1 in 32 and 1 in 2048 sequences now mapping to more than one location

in the genome. There is therefore a reasonable argument for simply discarding

any data with a quality value of below 30 – the expected loss of specificity is on

the order of 2% in the worst case (that is, around 2% of sequences that would

previously have aligned uniquely may no longer do so), but around 50% of in-

correct bases will be discarded and so the accuracy of the remaining sequence

should be significantly greater.

There are therefore two arguments for determining the threshold value.

One would be to set the threshold to 12, at the peak of the effectiveness of the

classifier. The other would be to discard all data with a quality of less than 30

in order to discard as much incorrect sequence data as possible.

After realigning sequences with differing levels of quality masking (ie, re-

placing all bases below a certain quality with a wildcard able to match any

base), the results shown in figures 2.10 and 2.11 were obtained.

Figure 2.10 is consistent with the ROC analysis – setting the quality thresh-

old to 12 would include the area of greatest gain in aligned sequences. Figure

2.11 shows a value slightly worse than the expected worst case calculation for

loss of specificity. The peak proportion of uniquely aligned sequences (that

is, sequences which are aligned to a unique location on the genome) is 0.596

at a quality threshold of 17. At a quality threshold of 27 (ie, discarding all

bases with a quality score of 27 or lower), the proportion is 0.574. This indi-

cates that around 3.7% (or 1 in 27) of sequences lost specificity. The calculated

value assumed an approximately random distribution of bases. In reality, gene
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Figure 2.8: ROC curve plot of true and false positive rates for sequences
aligned against the 2S rRNA sequence
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Figure 2.9: ROC curve plot of true and false positive rates for sequences
aligned against the 3’ adapter sequence
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Quality Proportion of good bases lost
-5 1.9e-08
-4 2.3e-06
-3 1.8e-05
-2 7.4e-05
-1 0.00020
0 0.00066
1 0.0015
2 0.0025
3 0.0040
4 0.0060
5 0.0086
6 0.012
7 0.017
8 0.022
9 0.029
10 0.036
11 0.044
12 0.054
13 0.064
14 0.074
15 0.085
16 0.098
17 0.11
18 0.12
19 0.13
20 0.15
21 0.16
22 0.18
23 0.19
24 0.20
25 0.21
27 0.23
28 0.23
29 0.23
30 1

Table 2.4: The proportion of good bases lost at different quality threshold val-
ues
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Figure 2.10: Total proportion of sequences successfully aligned against the ref-
erence genome without mismatches after base removal at the indicated thresh-
old

duplication and reuse of similar domains in multiple proteins will mean that

the primary sequence of functional genes may well be similar to that of other

functional genes or pseudogenes. As a result, even small losses in information

content may cause these sequences to align to multiple locations.
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Figure 2.11: Total proportion of sequences successfully aligned against a
unique location on the reference genome without mismatches after base re-
moval at the indicated threshold

2.4 Conclusion

The average quality of the Solexa sequencing method is high, with the majority

of called bases having an error rate of around 0.3%. 1/3 of this appears to be

attributable to the preparation technique, as an error rate of only 0.2% is seen in

the synthetic DNA used as the adapter sequence. This error rate is sufficiently

low that it permits the identification of a previously undescribed variant of

the 2S rRNA gene that is expressed at a low level in D. melanogaster, as well as

providing evidence for a novel mutation in at least one 2S rRNA in the strain of

D. melanogaster used for the preparation of the sequences. This high sensitivity

demonstrates the power of high-throughput sequencing in examining gene

expression.

By examining the quality levels, it is possible to draw conclusions about
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the appropriate level of sequence to discard. Setting the quality threshold to

17 appears to be optimal for ensuring that as many sequences as possible are

uniquely aligned to the reference genome. Setting the quality threshold to 29

allows an extra 1.2% of sequences to be aligned, but in the process results in

3.7% fewer sequences being uniquely aligned. Determining the precise point

to set this threshold may depend on the nature of the analysis being carried

out. A lower threshold (ie, keeping more data) would discard more sequences

that might otherwise be aligned. Increasing the quality score at which bases

are discarded increases the probability that the sequences will be aligned, at

the cost of a certain loss of specificity. In effect, this would lead to a decrease in

false negatives (that is, areas that are expressed but whose reads are discarded)

at the cost of an increase in false positives (that is, areas that are not expressed

but which now have reads aligned against them). The tuning of this parameter

is therefore influenced by experimental design.

The divergence in the apparent sequence of some copies of the 2S rRNA

demonstrates the ability for comparative genomics to pinpoint sequence di-

vergence, but also the rate at which sequences can change in even closely re-

lated species. D. simulans carries 25 copies of the 2S rRNA (compared to 16 in

the closely related D. melanogaster), but none show the point mutation present

in 4 of the 16 copies carried by D. melanogaster. Functional areas which demon-

strate greater than expected divergence may indicate the presence of increased

selection pressure, providing important evidence in determining what causes

the functional differences between related species.
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Chapter 3

Sequencing depth profiles as a tool

for locating genes

The raw data used for this analysis was provided by Karen Ma
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3.1 Introduction

The Solexa sequencing method allows a broad picture of expression levels of

short RNAs to be built up. However, it is not then straightforward to assign

predicted roles to each of these.

The sequences aligned against the reference genome may be thought of

as a frequency graph. A single read aligned against a given position would

represent a small bump against the background, while several thousand reads

would represent a significant peak. The shape of these peaks then provides

information about the transcript – the degradation products of an exon might

be expected to be represented by a fairly flat peak stretching the entire length of

the exon, while a tRNA would be a short peak which may or may not contain

a gap indicating the presence of an intron. Similar methods have been used in

the past for the discovery of other genetic elements (Lu et al., 2005) – here it is

applied to tRNA discovery.

tRNA

Transfer RNA (tRNA) genes typically account for a relatively large number

of genes in eukaryotic genomes. Release 5.3 of the D. melanogaster genome as

retrieved from Flybase (FlyBase Consortium., 2003) contains 314 annotated tR-

NAs. tRNAs all fulfill the same purpose – that is, they are responsible for trans-

ferring amino acids to the ribosome and recognising the appropriate codon

sequence in order to allow translation of an mRNA. This constrains them to

sharing a similar secondary sequence, a property that has been taken advan-

tage of by numerous applications designed to predict tRNA genes by genomic

sequence alone.
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The first of these prediction applications was developed by Roger Staden

in 1980 (Staden, 1980). The abstract included the claim that “This program

obviates the need to map the tRNA genes”, which with hindsight was some-

what at odds with the rash of similar applications that were produced over

the following decades. tRNAscan-SE (Lowe and Eddy, 1997) and Aragorn

(Laslett and Canback, 2004) are now the most commonly used applications,

with tRNAscan offering an extremely favourable combination of sensitivity

and selectivity. These tools have sufficiently high performance that the need

for mapping of the tRNA genes has, effectively, been obviated.

tRNAscan SE has a claimed false positive rate of less than 0.00007 per

megabase. If this is accurate, the expected number of false positives in the

D. melanogaster genome would be fewer than 1. Aragorn performs approxi-

mately an order of magnitude worse than tRNAscan-SE in this respect, but

would still not be expected to produce any false positives on a genome of this

size.

In both cases, these figures are determined from examining the perfor-

mance of the software on random sequence. Even with careful selection of

sequence parameters, such as maintenance of di- and tri-nucleotide frequen-

cies, a random sequence will not match the information content of an actual

genome. In particular, degenerate tRNA genes may still bear a close resem-

blance to genuine tRNAs even if they are no longer expressed. Estimating the

ability of an algorithm to distinguish between tRNA pseudogenes and gen-

uine tRNA genes is difficult in the absence of good prior knowledge of which

sections of genome are functional and which are not.

High-throughput sequencing may provide an insight into this dilemma. It

is now practical to sequence the RNA content of a cell, including tRNAs. These
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sequences may then be aligned to the host genome and used to validate pre-

dictions made by applications such as tRNAscan-SE or Aragorn, as described

within this chapter.
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3.2 Methods

As discussed in the previous chapter, sequences of 27 bases and under were

derived from RNA extracted from D. melanogaster embryos (Ma, unpublished

results). Though the size selection would be expected to exclude tRNAs1, in-

spection revealed that a large number of exons of multiple types were repre-

sented in the sequences. The most likely explanations for this are either that

the sequences contained degradation products or that the extraction protocol

fragmented a proportion of full-length RNAs into shorter segments.

These sequences were aligned against the reference D. melanogaster genome.

The number of reads aligning to each location was recorded, along with whether

the read was uniquely aligned to this location or could be mapped to multiple

locations on the genome. When plotted as a graph, this alignment presents a

view of the sequence with peaks at locations with mapped reads. The presence

of a peak implies that the corresponding region of the genome is expressed,

with the height of the peak ideally being related to the relative expression level

of the region. In this case, due to the shortness of the reads, many genes were

only represented by degradation products. As a result of this somewhat more

stochastic process, for longer sequences the number of aligned reads may vary

greatly over their length even given a constant expression level.

An application was written to examine the profile generated after sequence

alignment, with the aim of generating sequences that bore some resemblance

to tRNAs. This was achieved by scanning the length of each chromosome in

both the forward and reverse strands, looking for runs of aligned sequence that

fit the desired criteria – in this case, that the length of the putative tRNA be be-

1The shortest annotated tRNA in D. melanogaster is 60 nucleotides, with the longest being
185
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Figure 3.1: Graphed profile of a tRNA containing an intron between base 85
and 144, indicated by the absence of sequence coverage at this point

tween 40 and 200 bases, that it contain no more than one intron (as determined

by the sequence count dropping to 0) and that the profile be supported by at

least 5 individual sequences at some point during its length in order to reduce

the probability that it was due only to spurious alignments. The first two cri-

teria were simply based on examination of existing annotations of tRNAs. The

final criterion was used in order to ensure confidence that the peak was not

simply an artifact generated by a faulty sequence being misaligned. Figures

3.2, 3.3, 3.4 and 3.5 show a graphical representation of these constraints.

Once these peaks had been generated, a further step was undertaken in

order to filter out a number of peaks that were considered more likely to belong

to transposable elements than genuine tRNAs. This consisted of extracting the

100 nucleotides surrounding each peak and blasting them against the genome.

For each putative tRNA, if the number of results with an e value of 0.0001 or
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Figure 3.2: This peak is too short to be accepted

Figure 3.3: This peak contains too many introns to be accepted
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Figure 3.4: This peak is supported by too few sequences to be accepted

Figure 3.5: This peak is just right
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lower was greater than 10, it was considered probable that the sequence was a

false positive.

Those putative tRNAs that passed the above criteria were then tested by

extracting the genomic sequence and running tRNAscan and Aragorn against

them. Sequences which were supported by both the profile data and at least

one of the prediction applications were considered as probable genuine tR-

NAs.
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3.3 Results

14601 potential tRNAs were identified before the blast analysis stage. After

apparently repetitive sequences were rejected, this number was decreased to

3925.

When checked against the 314 existing annotated tRNAs, 275 of them were

positively identified. Closer examination revealed that 10 more had been pos-

itively identified and then discarded at the filtering step. Of these, three were

located directly next to insertion elements, explaining the high frequency of

hits. The others appeared to be cases where the peak was detected as shorter

than in reality, with the result that the flanking sequence included sections of

tRNA. As a consequence, the blast filtering picked up on other tRNAs and

flagged the sequence as repetitive.

Sensitivity of the profile scanning approach

Reducing the stringency of the blast filtering increases the number of putative

tRNAs to 4972, covering 280 of the 314 annotated transcripts. Of the remaining

34, 3 were discarded in the filtering step as described above and 22 are anno-

tated as being present in the mitochondrial genome - an area not examined in

this analysis. 9 were annotated as being present on the nuclear chromosomes

but were not found. The small disparity between these figures and the num-

ber of putative tRNAs that matched annotated sequence appears to be down

to the peak finding application misinterpreting large introns as a gap between

two peaks, resulting in a single tRNA being misidentified as two putative tR-

NAs.

The 9 missing nuclear tRNAs were missed by the peak detection algorithm
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due to patchy coverage along their length, resulting in either no peak, a peak of

inadequate length or a peak appearing to contain more than one intron. These

rejections are therefore likely to be a consequence of the sequencing process

not being optimised for sequences the length of tRNAs, rather than a failure of

the algorithm itself.

Selectivity of the profile scanning approach

Of the 4972 sequences identified as potential tRNAs, 282 aligned with the 314

existing annotated tRNAs. Two of these corresponded to tRNAs that had al-

ready been identified – in these cases, the software had incorrectly identified

peaks with large introns as two independent peaks. Therefore, the selectivity

of the profile scanning approach on its own is a mere 5.6%. This corresponds

to an unacceptably high false positive rate of 94.3%.

In conjunction with post-analysis with either tRNAscan-SE or Aragorn, the

number of sequences identified as potential tRNAs drops to 268 (tRNAscan)

or 265 (Aragorn). These figures correspond to a true positive rate of approx-

imately 95%. The published figures for tRNAscan-SE suggest a true positive

rate of 99.5%, while those for Aragorn suggest a rate of 98.2%. The disparity

may be explained by the sequence coverage being sufficiently poor in places

that peak boundaries were smaller than the genuine tRNA boundaries. As

a consequence, the sequence passed to the prediction applications would be

smaller than the genuine tRNA and the application would fail to identify it as

a genuine tRNA.

Both tRNAscan-se and Aragorn identified two sequences in the putative

tRNA dataset that had not previously been identified as tRNAs, shown in table

3.3. The profiles of these putative tRNAs include sequences that uniquely map
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Chromosome Start End Strand
2R 7292203 7292304 +
2R 7292609 7292916 -

Table 3.1: The chromosomal coordinates and strand of potential novel tRNAs
identified by profile scanning technique and supported by tRNAscan-SE and
Aragorn

to that location, strongly supporting the hypothesis that these are functional

genes rather than pseudogenes with strong homology to functional tRNAs.

The false positive rate is therefore between 0 and 0.7%, giving a selectivity of

between 99.3% and 100%.

Sensitivity and selectivity of Aragorn

When run against the entire fly genome, Aragorn successfully identifies 290 of

the 314 annotated tRNAs in D. melanogaster, giving a sensitivity of 92.4%. It

also locates 5 unannotated sequences. Of these, two are supported by the pro-

file analysis approach. The other three are unsupported by sequence evidence.

This suggests a selectivity of between between 98.3% and 98.9%.

Comparative sequence analysis

In order to gain a better idea of whether the 2 predicted tRNAs were accurate,

their sequences were aligned against the the other 11 sequenced Drosophila.

Similar sequences were found in all other species, with the most relevant hits

in all cases being around 1.5 kilobases upstream of the putative orthologue for

the D. melanogaster gene CG7759. This matches the location of the sequences in

D. melanogaster, demonstrating strong sequence conservation across a signifi-

cant period of time.
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3.4 Discussion

The combination of supporting profile data and computational tRNA predic-

tion strongly supports the hypothesis that the sequences listed in table 3.3 are

genuine new tRNAs. If this is accurate, then the selectivity of the dual ap-

proach would be on the order of 100% – that is, any results found by both the

profile analysis and the computational predictions are highly likely to be true

tRNAs. The sensitivity of the approach is primarily bounded by the sensitiv-

ity of the tRNA prediction applications, as any tRNAs not predicted by these

applications will be rejected as spurious. In the event of the tRNA prediction

applications not being able to predict all genuine tRNAs, the combined ap-

proach will also reject some potentially genuine results. This may be viewed

as an argument for lowering the specificity of the prediction algorithms when

used in this situation, as while this may lead to an increase in the number of

tRNA-like pseudogenes picked up by the prediction algorithms, it is unlikely

that these would also be supported by the profile analysis. The loss in selec-

tivity of the prediction algorithms would therefore be compensated for.

The sensitivity of the profile analysis technique was also limited by the ab-

sence of good sequence coverage of some tRNAs. This limitation is likely to

have been a result of the size selection involved in the initial RNA extraction

protocol. A practical approach aimed at locating tRNAs would involve differ-

ent size selection criteria, and would therefore be likely to provide better cov-

erage of these areas. This would also enhance the sensitivity of the approach,

reducing the number of genuine tRNAs that were missed. The relatively low

coverage of some tRNAs in the profile analysis makes it impractical to con-

clude that tRNAs with no coverage are misannotated. A more in-depth study
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would make it possible to determine whether these tRNAs are genuine or not.

The high level of conservation across all available Drosophila sequences is

strongly suggestive of functional conservation. The sequences of the two pre-

dicted tRNAs are highly similar2, which in conjunction with their tight coloca-

tion in the upstream region of CG7759 suggests an ancestral duplication event.

This arrangement could not be located in any other sequenced insect, suggest-

ing that they developed some time after the Drosophoilidae and Culicidae split

some 250 million years ago (Winter et al., 2007).

2But show adequate divergence to be certain that both are expressed
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3.5 Conclusion

Sequence expression profile analysis provides strong evidence for determining

whether a tRNA prediction is valid or not, though the sequence coverage of

some tRNAs was sufficiently low in this case to make it impossible to conclude

that any previously annotated tRNAs were spurious.

The combination of profile analysis and tRNA prediction validates the iden-

tification of two previously unannotated tRNAs, providing experimental sup-

port for predictions made by the existing tRNA prediction applications. Ap-

plying conservational analysis to these sequences supports this conclusion,

and strongly suggests that these tRNAs developed within the past 250 million

years.

It is therefore possible to conclude that the combination of profile analy-

sis and computational prediction algorithms provides a powerful tool for the

identification and annotation of functional elements.
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Chapter 4

Conservational analysis of a dataset

of putative microRNAs

The set of putative microRNAs used for this analysis was provided by Karen Ma
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4.1 Introduction

In 1993, Lee et al. (1993) noted that the lin-4 gene in C. Elegans was required

in order to control the temporal expression of the LIN-14 protein. Further ex-

amination revealed that lin-4 did not encode a protein, but instead generated

a 22-base RNA complementary to the 3’ UTR of lin-14. It was suggested that

the short RNA bound to the lin-14 transcript, forming a double-stranded RNA

and inhibiting translation. Controlling the expression of lin-4 would therefore

influence the translation of lin-14, providing the observed temporal control of

LIN-14 production.

By 2001, almost 100 of these small RNAs had been discovered (Lagos-

Quintana et al., 2001; Lau et al., 2001; Lee and Ambros, 2001) and the term

microRNA introduced to describe them. The region surrounding these tran-

scripts showed a tendency to fold into a stem-loop structure with the mature

transcript located in one arm. Subsequent work showed that processing of this

hairpin by the Dicer gene product, an RNAse III enzyme, would result in the

mature transcript (Bernstein et al., 2001).

As more genomic sequence became available, computational prediction

tools started to appear. MIRscan (Lim et al., 2003) and miRseeker (Lai et al.,

2003) both adopted similar techniques based on locating areas of predicted

hairpin formation and measuring conservation, with miRseeker suggesting

around 100 microRNAs in the Drosophila genomes. While these applications

showed high specificity, their reliance on conservation inherently reduced their

ability to locate species-specific microRNAs.

High throughput sequencing allows an alternate approach to be taken.

Rather than relying on conservation to reduce the false positive rate, it is pos-
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sible to limit predictions to sequences that are expressed in vivo. Predictions

based on these data will therefore be supported by biological evidence without

limiting the method’s sensitivity for species-specific microRNAs.

A dataset of putative microRNAs1 was obtained using a method similar to

that described in Chapter 3, using criteria derived from Ambros et al. (2003)

with additional criteria to improve sensitivity and specificity(Ma, unpublished

work). Their conservation amongst Drosophila genomes was then tested in

order to gain an understanding of the distribution of the predictions.

1Kindly provided by Karen Ma
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4.2 Methods

The coordinates of putative microRNAs were used to extract the correspond-

ing sequence from the D. melanogaster genome, along with 100 bases of flank-

ing sequence on each side. These sequences were aligned against the sequences

of the other 11 genomes. Any significant hits were examined to ensure that the

seed region of the microRNA was conserved, as this is believed to be the re-

gion of the microRNA that provides specificity in target binding (Lewis et al.,

2003). The species furthest from D. melanogaster, while still retaining conser-

vation, was recorded. This was repeated with the set of previously known

microRNAs.

As a control set, 1000 randomly chosen sequences were extracted from each

of the intronic and intergenic regions of the D. melanogaster genome. These sets

were treated separately in order to ensure that the analysis was not biased by

any different conservation pressures in intronic and intergenic regions. Each

of these consisted of 22 bases in order to approximate the length of the putative

microRNAs. These sequences were then aligned against the other 11 genomes

with the same constraints as the putative microRNAs, as described above.

The results from the control set were used to generate a distribution via

bootstrapping: for each iteration, 100 of the samples were chosen and the pro-

portion falling into each category of conservation recorded. This was repeated

1000 times, providing a range of figures for each category. The mean and stan-

dard deviation of each category were then calculated and used to plot 95%

confidence limits.

Some of the putative microRNAs were identified as overlapping microR-

NAs predicted by Ruby et al. (2007). A second dataset without these overlap-
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ping predictions was also generated and examined in the same way.
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Table 4.1: Key to distance from D. melanogaster, as estimated by Tamura et al.
(2004)
Millions of years Species
5.4 D. simulans, D. sechellia
12.8 D. yakuba, D. erecta
44.2 D. ananassae
54.9 D. pseudoobscura, D. persimilis
62.2 D. willistoni
62.9 D. mojavensis, D. virilis, D. grimshawi

4.3 Results

Figures 4.1 and 4.2 show plots of the conservation of previously known mi-

croRNA dataset and putative microRNA dataset against the randomly selected

sequences in intronic and intergenic regions, respectively. In both cases the

previously known microRNAs are significantly better conserved than the ran-

dom sequences across the entire range of species. In species as far away as D.

yakuba and D. erecta the putative microRNAs are better conserved than the ran-

dom sequences. However, beyond this the putative microRNAs are no better

conserved than random sequence.

Performing a Chi-squared test upon the number of putative microRNAs

conserved at each boundary (using the distribution of previously known mi-

croRNAs to generate the expected values) provides a probability of < 0.0001,

strongly indicating that the distribution of the putative microRNAs is different

to that of previously known microRNAs.
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Figure 4.1: Conservation of intronic sequences. Evolutionary distance is mil-
lions of years of divergence from D. melanogaster, as estimated by Tamura et al.
(2004) and shown in table 4.1. Error bars indicate 95% confidence limits on con-
servation of random sequences derived from D. melanogaster. Plotted against
these are previously known MicroRNAs and the putative MicroRNA dataset
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Figure 4.2: Conservation of intergenic sequences. Evolutionary distance is mil-
lions of years of divergence from D. melanogaster, as estimated by Tamura et al.
(2004) and shown in table 4.1. Error bars indicate 95% confidence limits on con-
servation of random sequences derived from D. melanogaster. Plotted against
these are previously known MicroRNAs and the putative MicroRNA dataset

69



4.4 Discussion

Of the previously annotated microRNAs, 89% are conserved across the entire

range of sequenced Drosophilids with 7% being limited to the Melanogaster

subgroup and the remainder being somewhere in between. However, recent

studies (Berezikov et al., 2006; Lu et al., 2006; Ruby et al., 2006, 2007) have lo-

cated evidence for less well conserved microRNAs. Ruby et al. (2007) describe

a set of 58 novel microRNAs in D. melanogaster which is less well conserved

than the previously known sequences (as shown in figure 4.5). Using the same

method for conservational analysis as described previously, only 67% of these

new predicted sequences are conserved over the entire range. 14% are limited

to the Melanogaster subgroup.

Any attempt to use conservational analysis to determine the plausibility

of predicted microRNAs being functional must therefore consider what the

“true” distribution is. Ruby et al. (2007) suggest that the distribution of their

identified microRNAs differs due to previous analyses using conservational

studies to validate their predictions – that is, if a predicted microRNA could

not be found in other species, it would tend to be regarded as spurious. They

further note that many of these lineage-specific microRNAs tend to be ex-

pressed at lower levels, making it harder for them to be observed before the

availability of ultra high-throughput sequencing techniques. The result of this

would be that the existing annotations will tend to be enriched for sequences

that are well conserved, rendering it inevitable that the conservation profile

for previously annotated microRNAs will show high levels of conservation.

The studied set of putative microRNAs contained several sequences that

were also present in the set identified by Ruby et al. (2007). Removing these
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Figure 4.3: Conservation of intronic sequences. Evolutionary distance is mil-
lions of years of divergence from D. melanogaster, as estimated by Tamura et al.
(2004) and shown in table 4.1. Error bars indicate 95% confidence limits on con-
servation of random sequences derived from D. melanogaster. Plotted against
these are putative microRNAs with and without the overlapping data from
Ruby et al. (2007).

from the dataset results in figures 4.3 and 4.4 for intronic and intergenic se-

quences, respectively. Removing these overlapping sequences results in little

significant change to the results, though it is notable that the proportion of se-

quences conserved across all 12 species is reduced. This is accompanied by

an increase in the proportion of sequences that are only conserved as far as D.

yakuba and D. erecta.

How these results are to be interpreted depends on assumptions made

about microRNA evolution. The vast majority of known microRNAs in D.

melanogaster are well conserved across multiple species of Drosophila, and
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Figure 4.4: Conservation of intergenic sequences. Evolutionary distance is in
millions of years of divergence from D. melanogaster, as estimated by Tamura
et al. (2004) and shown in table 4.1. Error bars indicate 95% confidence limits
on conservation of random sequences derived from D. melanogaster. Plotted
against these are putative microRNAs with and without the overlapping data
from Ruby et al. (2007).
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there is therefore a temptation to conclude that any algorithm that generates

predictions without these properties is poor.

However, it is also plausible that there is more evolutionary flux in mi-

croRNAs than has previously been believed. This hypothesis would imply

that a the existence of a large number of poorly conserved putative microR-

NAs suggests that they evolved relatively recently in the organism’s history.

The results are not inconsistent with this hypothesis – conservation as far away

as D. yakuba and D. erecta is high, after which the results become statistically

indistinguishable from the randomly selected sequences. The significant dif-

ference between conservation of the putative microRNAs and conservation of

randomly chosen sequences in these closely related species implies a certain

degree of functional conservation.

In the species close to D. melanogaster, the difference between conservation

of the random sequences and the putative set is on the order of 15-20%. This

indicates that 15-20% of the putative sequences are better conserved than ex-

pected by chance alone, implying that at least that number represent some

functional conservation – the true number may be much higher. This in turn

implies the evolution of at least 20-30 microRNAs between the divergences of

D. ananassae and D. erecta, or between approximately 40 and 12 million years

ago (Tamura et al., 2004). This would imply an average rate of microRNA gain

of approximately one per one to two million years, a figure that does not seem

biologically implausible.

The implication that the putative microRNA set may contain sequences

that evolved in relatively recent history is marginally supported by examin-

ing the level of conservation in more evolutionarily divergent species. With

the overlapping data from Ruby et al. (2007) removed (figures 4.3 and 4.4),
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the results are verging on being less well conserved than randomly selected

sequence in the more distantly related species. This is consistent with the evo-

lution of new microRNAs in recent history – as sequences become functional,

they will be subject to positive selection pressure and will evolve more quickly.

This will manifest itself as a lower rate of conservation than random sequences

under neutral selection pressure.

This leaves the question of why the level of conservation of the predicted

microRNAs drops off where it does. The D. pseudoobscura genome was avail-

able significantly earlier than that of other non-Melanogaster drosophilids,

and hence was used heavily in conservational analysis when attempting to

predict and identify microRNAs. A consequence of this would be that exist-

ing sets of annotated microRNAs would be biased towards those conserved

at least as far as D. pseudoobscura. If most well-conserved microRNAs have

already been identified, then any studies that filter out existing annotated mi-

croRNAs would therefore appear deficient in microRNAs that are conserved

in D. pseudoobscura and correspondingly enriched in microRNAs that are con-

served only in more closely related species.

The time between the divergence of D. pseudoobscura and the divergence of

D. ananassae is estimated to be around 10 million years, though the margin of

error in this estimate is sufficiently large that the splits could in fact have been

roughly contemporaneous (Tamura et al., 2004). If the time period between the

two divergence events is small, then the probability of new microRNAs devel-

oping between those events is also small. This would be consistent with the

most precipitous drop in conservation of the predictions being observed at the

Melanogaster/Ananassae split rather than the Melanogaster/Pseudoobscura

split. A similar but much less pronounced drop can be seen in the plot of the
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Figure 4.5: Conservation of sequences from predictions in Ruby et al. (2007),
plotted against that of previously annotated microRNAs. Evolutionary dis-
tance is in terms of evolutionary forks away from D. melanogaster, as shown in
table 4.1. Error bars indicate 95% confidence limits on conservation of random
sequences derived from D. melanogaster.

data from Ruby et al. (2007), as shown in figure 4.5. The same considerations

would apply to this set of data.

Much of this analysis is based on assumptions about the evolutionary his-

tory of the organisms considered. As these speciation events occurred in the

distant past, we can only infer this history from phylogenetic analysis of the

organisms’ genomes. One of the assumptions made in phylogenetic analysis

is that the rate of genomic change is broadly constant over time and across

the different species concerned. If this is not true, it is possible that speciation

events that look broadly simultaneous may in fact have occurred significant

distances apart – or vice-versa.
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This limitation does not pose a significant concern to this analysis. The

aim was to identify whether the analysed sequences were conserved at a sig-

nificantly different rate to random sequences in the same organisms. Unless

there is any reason to think that this genomic change preferentially targeted

sequences other than the putative microRNAs, the results remain valid. “Mil-

lions of years” in this case could instead be considered a shorthand for “Degree

of genomic change”.

Phylogenetic analysis also risks misjudging the order or structure of speci-

ation events. This risk is greater where horizontal transfer may result in anal-

ysed genes passing between two otherwise distantly related species, resulted

in them being considered closely related. For more distantly related species,

it is also possible that convergent evolution may drive coding sequences back

towards each other.

These issues are also unlikely to have affected this analysis. While phy-

logenetic trees based on small quantities of sequences stand a higher chance

of misidentifying species relationships, Drosophila benefits from being well

sequenced. Phylogenetic analysis can therefore take into account sections of

genome, both coding and non-coding. Misidentification of species relation-

ships would therefore require large quantities of genomic sequence from dis-

tantly related species to converge. Any argument that this is a likely outcome

of genomic change stretches credulity. It is therefore reasonable to assume that

the generally held history of Drosophila speciation is accurate, even if the tim-

ings of certain events hold some uncertainty.
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4.5 Conclusion

The comparative genomics analysis allows us to say with a high level of con-

fidence that the putative microRNAs are not from the same population as pre-

viously known microRNAs in D. melanogaster. The higher than expected level

of conservation in species closely related to D. melanogaster is consistent with

a set of more species specific microRNAs being identified, with conservation

suggesting at least 20-30 of them as functional. This number is likely to be

much higher, given the sequence evidence supporting each of them.
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Chapter 5

Conservation analysis of gene

nesting relationships

This chapter is a development following on from collaborative work published in Hud-

son et al. (2007)
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5.1 Introduction

The hypothesis that conservation of genetic features will be higher when the

features are functional is not limited to the primary sequences of genes. This

chapter explores the use of conservational analysis as applied to a different

type of feature – the relative arrangements of genes.

The first identified case of a eukaryotic gene being located within the in-

tron of another gene was the discovery that the Pcp gene in D. melanogaster was

contained within an intron of ade3 (Henikoff et al., 1986). Further investigation

noted that this arrangement (including non-coding elements) was conserved

for over 50 million years, as far as D. pseudoobscura 1, suggesting a possible

functional relationship or linking of expression. Hudson et al. (2007) described

a conserved nesting relationship between kay and fig which has survived many

independent chromosomal rearrangement events, strongly arguing for a func-

tional relationship fig is hypothesised to be involved in kay regulation, strongly

supporting the concept that they share some level of interdependent regula-

tion, perhaps being driven divergently from a common promoter.

In humans, Yu et al. (2005) located 373 nested genes showing around 58%

conservation to mouse, 28% to chicken and 15% to Takifugu Rubripes. 73% of

the nested pairs examined via microarray analysis showed significant negative

correlation in expression, suggesting that nesting may be used as a mechanism

for avoiding coexpression of genes either by blocking the transcription appa-

ratus, or by spliced introns from one gene forming dsRNA with the other.

The combination of high-quality genomic annotation for D. melanogaster

and sequences for many closely related species has made it possible to con-

1though not in all other Diptera (Clark and Henikoff, 1992)
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template whole-genome identification of nested genes and detailed analysis

of the level of conservation. This chapter will attempt to determine the be-

haviour and functional significance of nested genes.
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5.2 Methods

GFF files containing tabulated data of chromosomal features were obtained

from http://www.flybase.org and used to determine the location of protein-

coding genes in D. melanogaster. Genes which were entirely contained within

intronic portions of other genes were identified, while non-nested and partially-

nested genes were excluded. This resulted in a set of 1034 nested genes. The

peptide sequences of each coding exon were identified and aligned against

each of the other 11 sequences species of Drosophila using tlbastn (Altschul

et al., 1997) in order to determine the extents of the orthologous genes in these

remote species. The orthologous regions in each species were then exam-

ined to identify whether they retained the same nesting arrangement as in D.

melanogaster.

GFF files were obtained from ftp://ftp.ensembl.org and used to determine

the location of protein-coding genes in the human genome. Genes which

were entirely contained within intronic portions of other genes were identi-

fied, while non-nested and partially-nested genes were excluded. Orthology

information between human genes and D. melanogaster was obtained from

http://inparanoid.sbc.su.se/ (Remm et al., 2001) and used to translate the set

of nested human genes into the set of nested D. melanogaster orthologues. This

list was then compared to the set of nested D. melanogaster genes.
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5.3 Results

The tblastn approach was applied to D. melanogaster as a means of judging

sensitivity. 605 nested genes were recovered, indicating a sensitivity of around

58.5%. When applied to D. pseudoobscura, 391 conserved nested genes were re-

covered. This compares favourably to an approach using existing gene anno-

tations in D. pseudoobscura which identified only 215 conserved pairs (Hudson

et al., 2007), indicating that current levels of gene annotation in non-Melanogaster

organisms are probably lacking.

Of these 605 sets of nested genes in D. melanogaster, 433 unique container

genes were identified. Most of these genes contained only a single nested gene,

but 96 contained more than one. Flo-2 contained 14 genes, the most of any

single gene. The number of pairs conserved in each of the other species is

shown in figure 5.1.

The relatively poor sensitivity (58.5% in D. melanogaster) of the search tool

was examined to determine the sources of the errors. 113 of the nesting pairs

could not be unambiguously identified, resulting in a failure to identify the

nesting. 114 were identified as being either on separate chromosomes, or

spread widely on the same chromosome. 202 were identified as being located

nearby on the same chromosome, suggesting that the extents of the genes had

been misidentified.

Using these figures to estimate the false classification rate allowed a similar

analysis to be performed on the other results, providing an estimate of the

“true” number of nested pairs. This is shown in figure 5.2.
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Figure 5.1: Conservation of nested genes. The number of gene nesting rela-
tionships in D. melanogaster that are conserved in each of the other sequenced
species
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Figure 5.2: Conservation of nested genes. The estimated true number of gene
nesting relationships in D. melanogaster that are conserved in each of the other
sequenced species
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5.4 Discussion

Modeling nested gene conservation

As shown in in figure 5.3 the number of conserved nesting arrangements tends

to decrease with evolutionary distance. An estimate of the lower bound of the

rate of loss of these nested genes can be made by examining D. yakuba and D.

erecta. Using the data derived purely from the blast analysis2, the number of

pairs conserved between D. melanogaster and D. yakuba is 562, with the number

conserved between D. melanogaster and D. erecta being 534. A more interesting

figure is the total number of pairs carried within these two species, which is

574.

This implies that the common ancestor of D. erecta and D. yakuba carried at

least 574 of the 605 pairs in the blast-identified subset of the pairs present in

D. melanogaster3. D. yakuba and D. erecta diverged some 10.4 million years ago

(Tamura et al., 2004). Assuming that all nested pairs have equal probability of

being disturbed, this is consistent with an exponential decay with a half-life of

between 99.7 and 341.2 million years.

D. melanogaster separated from the D. yakuba and D. erecta families around

12.8 million years ago, giving a gap of approximately 2.4 million years between

this event and the speciation of D. yakuba and D. erecta. Working backwards

from the figure of 574 nested genes in the common ancestor, we can calculate

that the common ancestor of D. melanogaster and these species carried between

2This analysis has been carried out with the directly measured numbers rather than the es-
timates of the true numbers, due to the increased uncertainty inherent in the estimates and the
inability to determine which pairs were conserved between a given species and D. melanogaster

3This ignores the case where both D. yakuba and D. erecta have independently lost the same
nesting arrangement, but the effect of this is likely to have little significance on the estimated
values
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Figure 5.3: Conservation of nested genes along with upper and lower bounds
of predicted conservation rate

577 and 584 nested genes that are present in D. melanogaster. This implies that

20-25 new pairs were gained by D. melanogaster over this 12.8 million year

period, or a rate of gain of approximately 2 nested pairs per million years.

This rate of gain is likely to be broadly independent of the existing number of

nested genes, and so can be modeled as a direct linear increase. Performing

the same analysis with D. mojavensis, D. virilis and D. grimshawi provides a

comparable estimate.

Combining these two rates results in a formula of n = (605− 2x)erx, where

n is the number of nesting arrangements, x the number of millions of years

of divergence and r the halflife of a nesting arrangement in millions of years.

This is plotted in figure 5.3. The majority of results are within the range iden-
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tified above, with the notable exceptions of D. simulans and D. sechellia. Both

these genomes have been noted as being of poorer quality than the other se-

quenced genomes, with a larger number of artifacts (Hahn et al., 2007). Ex-

amining the data for D. simulans shows a disproportionately high number of

nested genes that appear to have unambiguously altered their nesting status,

either by moving to different chromosomes or being widely separated on the

same chromosome. This indicates either a genuine acceleration in disruption

of nesting arrangements or is an artifact of poor quality assembly.

Applying these figures to the estimated number of nested gene pairs results

in the graph shown in figure 5.4. This suggests that the estimate of the rate of

loss is excessive, with the half life perhaps being closer to the 340 million years

figure. However, making a firmer estimate is difficult without a better idea as

to which genes are actually conserved. This will require an improvement in

the quality of genomic annotation.

Functional conservation of nested genes

Perhaps worthy of note is the sole pair identified as being conserved between

D. melanogaster and human. The predicted model of nesting suggests that the

number of nested genes in common between D. melanogaster and any other

organism would decrease to 1 after approximately 180 to 520 million years of

divergence, a figure not grossly inconsistent with the estimated divergence of

600 million years predicted to have passed since the branching of the Ecdyso-

zoa and Deuterostomia. Nevertheless, the existence of a conserved pair is not

a highly likely event.

The containing gene is Brf, a necessary component of the RNA polymerase

III transcription machinery (Takada et al., 2000) and computationally identi-
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Figure 5.4: Estimated true number of nested genes in species, along with upper
and lower bounds of predicted conservation rate
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fied as being involved in RNA polymerase II activity (Thomas et al., 2003). The

nested gene (CG5319) is also annotated as associating with RNA polymerase

II promoters, though this is purely through sequence homology. BTBD6, the

human orthologue of CG5313, has no functional annotation but two similar

proteins in humans (BTBD1 and BTBD2) have been experimentally identified

as associating with topoisomerase I (Xu et al., 2002). The C terminus of BTBD1

has been identified as sufficient for binding of topoisomerase I, and this region

shows high levels of homology to CG5319.

The degree of sequence conservation suggests that CG5319 (and, by exten-

sion, BTBD6) will also bind with topoisomerase I. Topoisomerase I is essential

for gene expression in higher eukaryotes, though not in yeast (Lee et al., 1993),

and has been shown to enhance TFIID-TFIIA complex assembly during tran-

scription activation (Shykind et al., 1997). This argues for CG5319’s role in

polymerase II activation.

According to GOToolBoxMartin et al. (2004), the probability of two genes

associated with RNA polymerase II activity being randomly chosen is < 0.01,

and in conjunction with the degree of conservation that this nesting relation-

ship possesses provides a compelling argument in favour of this nesting re-

lationship being functional. Expression data extracted from Genenote (Yanai

et al., 2005) suggests that in humans, both genes are expressed in all tissue

types with the CG5319 orthologue being expressed at a lower level. However,

this does not rule out the possibility that expression of one gene downregu-

lates the other – examination of expression levels at different stages of the cell

cycle would be required to determine that.
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5.5 Conclusions

Conservational analysis has provided insight into the development of a model

for the development and retention of nested gene pairs in Drosophila. In itself,

this does not give any particular insight into whether nesting arrangements

are functional. However, a high proportion of the total number of nesting ar-

rangements in D. melanogaster are conserved over the entire set of sequenced

drosophilids, indicating conservation over some 60 million years of evolution.

While it is tempting to conclude that this slow rate of clearance is evidence for

functional relationships, the ability to model the conservation rate as a random

process suggests that this may not be the case. However, extending this anal-

ysis to humans provides a nesting relationship that has survived around 600

million years of divergence and shows suggestive evidence of a functional re-

lationship. In combination with the high level of conservation of the kay and fig

arrangement shown by Hudson et al. (2007), this provides a strong indication

that some proportion of the nesting arrangements are under positive selection

pressure.
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Chapter 6

Locating functional RNA structural

elements via folding and

comparative genomics
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6.1 Introduction

Comparative analysis of genes often concentrates on either the entire gene it-

self, or gross structure such as exons or protein domains. This ignores other

functional elements contained within genes. This chapter explores one in-

stance of this – RNA secondary structural elements used for transcript locali-

sation.

In E. coli, a typical mRNA molecule may be responsible for the production

of a protein molecule approximately every 3 seconds. In D. melanogaster, the

average halflife of an mRNA molecule is somewhere in the region of 80 min-

utes (Ma and Huen, 2005). As a consequence, a single mRNA molecule could

be capable of producing well over 1000 protein molecules during its lifetime.

Localisation of the mRNA molecule therefore provides significant efficiency

benefits over localisation of individual proteins.

However, efficiency is not the only argument for RNA localisation. In order

for an egg to develop into an adult organism, it is necessary for it to have some

asymmetry. This is commonly accomplished by localising RNA in specific ar-

eas of the egg. When the egg is fertilised and translation starts, the protein

formed will also be localised and so, as the egg begins to divide into multiple

cells, can affect gene expression and cell fate. The initial RNA localisation re-

sults in differing cell fates depending on where in the egg the cells are located,

accomplishing the goal of setting up an initial axis.

Localisation’s role in cell fate determination is not limited to axis formation.

Asymmetric cell division is common during development, with each of the

offspring developing into different types of cell. This can be achieved in a

similar manner to axis formation. RNA is localised to one end of the cell so
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that it is segregated into a single daughter cell on division. Translation of this

RNA again results in a protein that can influence cell fate, and its presence in

one cell triggers a different development pathway to the other daughter.

It is fairly easy to understand how RNA localisation can be useful in de-

velopment. Slightly more confusing is the role of RNA localisation in somatic

cells. As an example, RNA localisation in the neurones has been implicated

in learning (Miller et al., 2002). It is hypothesised that neuronal stimulation

may lead to differing localisation of RNAs, with transcripts clustering around

the dendrites. Translation of these transcripts may then alter the behaviour of

synaptic junctions and allow long-term adaptation to the stimulus.

Examples of mRNA localisation

mRNA localisation was first observed in Ascidian eggs (Jeffery et al., 1983),

where β actin mRNA is localised to the myoplasm. As understanding of the

process of development and visualisation techniques improved, it became pos-

sible to find many more examples of localisation.

k10 is a protein required for D. melanogaster development. Flies carrying

mutated copies are viable, but mutant females are sterile. This can be ex-

plained by the observation that k10 mRNA is laid down in the oocyte by the

mother. Closer examination reveals that the k10 mRNA is localised to the an-

terior end of the egg, suggesting a role in polarisation of the embryo. (Cheung

et al., 1992). Indeed, incorrect localisation of k10 mRNA results in a failure of

gurken mRNA to localise to the dorsal side of the anterior of the egg (Schup-

bach, 1987; Haenlin et al., 1995). Correct localisation of gurken to the dorsal

side of the egg is required for dorsal-ventral axis formation.

Interestingly, localisation of gurken is not limited to this dorsal-ventral
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role. Earlier in development, gurken mRNA is localised at the posterior of

the embryo and translated gurken protein is required for induction of poste-

rior cell fate (Gonzales-Reyes et al., 1995). Gurken highlights an important

aspect of mRNA localisation – it is not a straightforward process. An ide-

alised mechanism might resemble a postal system. Transcripts would carry a

small sequence identifying the region they should be localised to, and the em-

bryo would contain machinery for recognising those sequences and carrying

the transcripts to the appropriate region. As the case of gurken shows, life is

not that simple. The same transcript may be localised to different regions of

the embryo at different times. Even localisation to a single location may be

achieved through multiple stages, as can be seen in bicoid (McGregor, 2005).

There are many other maternally localised mRNAs in D. melanogaster. bi-

coid is localised to the anterior pole during oogenesis, and is responsible for

anterior structure generation (Berleth et al., 1988). While bicoid mRNA is

tightly localised to the anterior of the cell, this is less true of its protein. After

translation, this slowly diffuses towards the posterior of the cell. The resulting

gradient influences cell fate along the anterior-posterior axis and so plays a

significant role in axis formation.

bicoid also demonstrates another important feature of mRNA localisation.

While localisation will result in localised protein expression, not all localised

protein expression is due to localisation of the corresponding mRNA. caudal

mRNA is expressed constitutively, but caudal protein is not. This is because bi-

coid protein binds to caudal mRNA and inhibits its translation (Rivera-Pomar

et al., 1996). Since bicoid protein is present in a gradient along the anterior-

posterior axis, caudal is expressed in the opposite gradient.

Since bicoid is sufficient to result in the formation of the anterior-posterior
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axis, it may come as something of a surprise that several other mRNAs are

localised to the posterior of the cell. The most obvious is oskar, whose locali-

sation is necessary for formation of the pole plasm (the progenitor of the germ

cells) and abdomen (Lehmann and Nusslein-Volhard, 1986). oskar protein acts

indirectly: rather than encoding a transcription factor, oskar influences the lo-

calisation of other mRNAs and proteins (Breitwieser et al., 1996).

Perhaps the best characterised of these is nanos, the mRNA responsible for

encoding the protein that does actually trigger the posterior fate (Wang and

Lehmann, 1991). Translation of nanos is triggered after fertilisation, and the

protein diffuses across the embryo in a similar manner to bicoid. Interestingly,

in a similar way to bicoid’s inhibition of caudal, nanos will inhibit transcription

of bicoid (Wharton and Struhl, 1991). nanos thus strengthens the localisation

of bicoid mRNA to the anterior of the cell.

Correct formation of the pole cells requires further mRNA localisation.

germ cell-less protein induces some amount of pole cell formation (Jongens

et al., 1992), but is not sufficient – mislocalisation to the anterior of the oocyte

results in the production of polar buds, but not full pole cells (Jongens et al.,

1994). Pgc is a non-coding transcript that is localised to the posterior of the

cell, and is thought to be involved in the correct formation of the polar gran-

ules required for pole cell formation (Nakamura et al., 1996).

An interesting participant in multiple pathways, and a localised mRNA

itself, is Orb. It codes for the oo18 RNA-binding protein which contains an

element very similar to the terminal localisation sequence (TLS) in k10 (Serano

and Cohen, 1995), which implies localisation to the anterior. However, orb is

believed to be necessary for the translation of Oskar mRNA when it arrives at

the posterior of the cell (Chang et al., 1999). orb is also responsible for enabling
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translation of K10 and gurken mRNA, playing a role in the formation of the

dorso-ventral axis (Neuman-Silberberg and Schupbach, 1996). Orb appears to

influence its own translation and localisation (Tan et al., 2001), but it is clear

that it localises to different parts of the cell at different times.

How does localisation occur?

In order for localisation of mRNAs to occur, there must be some means by

which the localisation machinery can recognise the transcripts. In several mR-

NAs, this has been traced to small regions of sequence. So far these have

tended to be located in the 3’ UTR1 and fold into distinctive secondary struc-

ture.

One of the best characterised localisation elements is that of K10. It has

been identified as a 44 base stem-loop structure (Serano and Cohen, 1995)

which is both necessary and sufficient for localisation. Mutations which dis-

rupt the structure of the element have been found to impair localisation, in-

dicating that the secondary structure is more important than the primary se-

quence. Closer examination has revealed that mutations that alter the shape of

the minor groove impair localisation much more strongly than those that do

not (Cohen et al., 2005).

In contrast to DNA (where the minor groove is small and inaccessible), the

minor groove of double stranded RNA is the larger of the two grooves of the

helix. It is therefore hypothesised that the proteins that bind to this structure

in order to mediate the localisation identify it through interactions with the

minor groove.

Orb has a similar localisation pattern to K10, and marks the only currently

1Though this is not always true, as can be seen in gurken
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known occurrence of localisation element homology. The primary sequence of

the Orb element is similar to that of K10, especially at the top of the helical sec-

tion of the stem-loop structure. In contrast, the structure of the minor groove

is almost identical – 14 out of 17 base pairs are the same in this respect.

Unfortunately, so far no other elements have been identified as having ho-

mology to the K10 TLS. Even so, Bicoid has a well characterised and rather

more complex structure. A large region of the 3’ UTR is predicted to fold into

a structure including 5 stem loops (Seeger and Kaufman, 1990; MacDonald,

1990). Different elements of this structure appear to be responsible for different

stages of localisation. Initial localisation is disrupted if the structure of the dis-

tal section of stem-loop V is disrupted (Macdonald and Kerr, 1998). Its inter-

action with Staufen requires stem-loop III and the distal regions of stem-loop

IV and V to be structurally intact, although primary sequence conservation is

not required (Ferrandon et al., 1997). Stem-loop III is capable of base-pairing

with other bicoid molecules, and this also appears to be required for Staufen

recruitment (Ferrandon et al., 1997).

gurken’s localisation is, like bicoid’s, a multi-stage process. 5’ UTR signals

are required for localisation in late oogenesis (Saunders and Cohen, 1999) and

3’ UTR sequence for complete dorso-anterior localisation (Thio et al., 2000).

These have not been identified in detail, but a conserved stem-loop structure in

the open reading frame has been determined as necessary for localisation (Bor

et al., 2005). Interestingly, the I factor retrotransposon RNA includes a struc-

ture with similar secondary structure (though very little primary sequence

conservation) and localises in a similar manner to gurken. This supports the

idea that secondary structure is more important than primary sequence.
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Computational prediction of RNA structure

In contrast to protein structure, RNA secondary structure can be predicted

with a reasonable degree of accuracy. The most commonly used method is

known as the Zuker algorithm (Zuker, 2000). This is based on a simple ther-

modynamic model. As single stranded RNA folds back on itself and forms

helical sections, hydrogen bonds are formed between the paired bases. This

process releases energy. The more bonds formed, the more energy released

and the greater the stability of the structure.

The assumption is made that the structure formed is the one that forms

the most bonds and is therefore the most stable. Given a list of energy values

corresponding to each possible base pairing, finding the secondary structure

is then “merely” a matter of finding the optimal set of base pairs.

The problem is effectively one of dynamic programming (Bellman, 1957).

A grid can be built up with the sequence along both axes. Since the case be-

ing examined is that of a sequence folding back on itself, half the grid may

immediately be masked off and ignored 2. The grid is now filled in following

the diagonals. For every possible base pair, the score is incremented appropri-

ately. Since the value attached to a base pair is independent of the surrounding

context, this can be done without keeping significant quantities of information

about the state of the structure. As a result, the time taken by the algorithm is

only proportional to the square of the sequence length.

At this point, finding the optimal structure is simply a matter of starting

at the top right corner of the grid and tracking back through the scores. The

result is guaranteed to be the optimal structure.

2This is because base 1 pairing with base 10 is equivalent to base 10 pairing with base 1.
The latter case is ignored
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The above is a slightly simplified version of the algorithm. In reality, it is

also necessary to keep track of points where the structure may bifurcate, for

example by one stem loop structure branching off another. For a sequence of

N bases, there are effectively N-4 possible bifurcation points. These must each

be examined and the global score recalculated, resulting in an algorithm that

takes overall time proportional to the cube of the sequence length. To make

matters even more complicated, modern implementations take into account

the fact that the energy released by a given pair of bases bonding is influ-

enced by its neighbours. Even so it is practical to simulate the folding of every

D. melanogaster transcript on a modern desktop computer, the process taking

around a week.

Existing algorithms are capable of predicting RNA secondary structure with

an accuracy of between 50 and 70 percent when compared to experimentally

determined structure (Eddy, 2004). The single biggest flaw is their inability to

predict pseudoknots3. This is primarily for performance reasons – currently,

accurate algorithms that take pseudoknots into account are unusably slow ex-

cept for simple cases.

The other flaw is that the energy values used are not entirely accurate.

These must be experimentally determined, and may vary under different ex-

perimental conditions. Attempts have been made to work around this, and

algorithms which take the chemical modifiability of the RNA molecules into

account exist (Mathews et al., 2004). However, this requires significant ex-

perimental work and is mostly suited to aiding experimental verification of

predicted structures rather than enhancing the initial predictions.

On a genome-wide scale, the Zuker algorithm is currently the only viable

3Where bases in the loop of a stem-loop structure pair with bases outside that stem-loop
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method for producing predicted secondary structures. As a consequence, it is

the one that has been used in this work.

While most known functional mRNA secondary structures are under 50

bases long, it is not necessarily the case that each 50 base sequence will fold

in the same way in isolation when compared to the context of surrounding

mRNA sequence. In the context of the Zuker algorithm, possible pairing in

one region may be given up in order to sequester some of the bases con-

cerned into another, more energetically favourable structure. In vivo, it may be

more reasonable to think of this as there being some degree of thermodynamic

“churn”, finally resulting in the sequence settling into the most thermodynam-

ically favourable structure.

As a result, accuracy of structural prediction may be improved by simulat-

ing folding the entire mRNA. This has an unfortunate side-effect – as previ-

ously noted, simulated folding algorithms scale to order N3, where N is the

number of bases in the sequence to be folded. As a result, the time taken to

fold the sequence increases significantly. This effect was mitigated by splitting

up the workload and running multiple folding calculations in parallel.
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6.2 Methods

In order to obtain a reasonable estimate of the number and location of mRNA

structural elements over the entire genome, a simple software application was

written. This read in each mRNA from a FASTA file containing the entirety of

each spliced transcript in D. melanogaster. Each of these sequences was folded

using the Zuker algorithm.

Once a structure had been obtained for each mRNA, it was cut into seg-

ments representing individual structural elements. The algorithm for produc-

ing these elements ran as follows:

• The 5’ end of the structure was examined. If it was unpaired, it was

ignored and the next base chosen until a paired piece of structure was

found.

• The first base that formed part of a structure formed, by definition, part

of the “left hand side” of a structure. Any individual element should

contain the same number of “left hand” and “right hand” bases in order

to provide a consistent structure.

• Once the first structural base had been found, the next base was exam-

ined. If it was also a “left hand side” base, this step was repeated. For

each “left hand side” base found, a counter was incremented.

• Once the first “right hand side” base was located, the counter was decre-

mented. For each following “right hand side” base, the counter was fur-

ther decremented. If another “left hand side” base was located before

the counter reached zero, the 5’ base was incremented and the process

restarted.
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• If the counter reached zero, the sequence between the point where the

counter was initiated and where the counter reached zero represented

a minimal structural element. The start and end points were recorded,

along with the structure inbetween. The 5’ start point was then moved

to the end of the structural element and the process restarted.

This algorithm guaranteed that individual stem-loop structural elements

would be obtained. In the case of a structural element consisting of a branched

stem-loop structure, each individual stem-loop structure would be recorded

separately. As a result, some of the large scale structure of the folded mRNA

may have been lost.

This was considered to be an acceptable compromise. So far, each func-

tional localisation element has been determined to consist of a stem-loop struc-

ture, occasionally with additional non-base paired bubbles protruding from

the sides. More complex elements such as the Bicoid localisation element con-

sist of much larger structures, but each independent functional element of the

larger complex conforms to this criterion.
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6.3 Results

Across the entire genome, this methodology produced 1396992 individual struc-

tural elements. The vast majority of these (approximately 90%) were under 50

base pairs long, with the average element length being 29 bases (standard de-

viation of 21) and the average stem length being 9 bases (standard deviation

of 7)

103



6.4 Discussion

Identification of families of mRNA structural elements

As previously discussed, there are indications that functionality of mRNA lo-

calisation sequences depends on their structure rather than their primary se-

quence. Divergent sequences may therefore slowly evolve away from each

other while maintaining secondary structure – alternatively, convergent evo-

lution may drive structures towards similarity.

This leaves us with the problem of searching for structures that match any

particular structural query. Traditionally, there have been two slightly different

approaches used for this:

• A sequence and accompanying secondary structure are used to generate

a profile, which may incorporate aspects of the primary sequence such

as base composition. This profile is then used to search a database of

sequences. An attempt is made to fit each sequence to the profile’s struc-

ture, and (in a similar way to BLAST) scored on the degree of manipula-

tion required in order to fit the sequence to the search profile. Examples

of this are RSEARCH (Klein and Eddy, 2003) and ERPIN (Gautheret and

Lambert, 2001). RSEARCH is optimised for querying single sequences

against a database, whereas ERPIN is optimised for querying a multiple

alignment and consensus structure against a database.

• Alternatively, a model can be constructed to describe the pattern of the

structure. This model may contain information about the number of

bases in the structure, bases that must be conserved and bases that must

covary. Patsearch (Pesole et al., 2000) is typical of this.
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In the case of functional localisation elements, there are very few pre exist-

ing families. The only case of two known elements sharing a common func-

tional pathway is between K10 and ORB. In order to test the practicality of a

consensus structure based approach, the K10 and ORB elements were aligned

using CLUSTALW and then passed to RNAalifold (part of the Vienna package,

an implementation of the Zucker algorithm (Hofacker, 2003)). This provided

a consensus structure. This was then passed to ERPIN, which was instructed

to ignore bubbles and the loop at the top of the stem - instead, alignment was

to be based purely on how closely sequence could be fitted to the helical stem

segment of the structure.

The results were not promising. Even at low cutoff thresholds, ERPIN was

unable to identify any homologous sequence other than that found in the orig-

inal queries. ERPIN has been successful in cases where a larger set of infor-

mation is available 4, but does not seem appropriate in this case. The lack

of already known families also makes it impractical to build the models that

Patsearch requires.

As a result, further work was concentrated on RSEARCH. RSEARCH auto-

matically creates a covariance model (a tree describing the base pairing, which

then indicates which bases must vary together in order for the same struc-

ture to be formed) from the structure it is provided with, and then proceeds

to find optimal alignments between the target sequences and this covariance

model. Naively, RSEARCH generates a table with the query sequence on one

axis and the target sequence on the other axis. In a BLAST search this table

would then be filled with scores based on whether bases matched each other.
4For example, the iron response elements involved in iron metabolism – these have been

identified in several genes and across multiple organisms, allowing much better determination
of which information is functionally important
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This is made more difficult with RNA structural alignment, as matching two

bases (and thereby constraining them) may alter the ability of a distant base to

align.

Figure 6.1: (A) shows a simple mRNA sequence. If base 1 pairs with base 2, the
structure is constrained to that in (B). If base 1 pairs with base 3, the structure
is constrained to (C)

Effectively, aligning any two bases may result in the entire table’s scores

being rewritten. As a consequence the algorithmic complexity is much greater

and RSEARCH takes more processor time and more memory to perform a

search than BLAST. In order to make this manageable, an assumption is made

that any matches will not be significantly longer than the query. If a 50 base

structure is queried against a 3000 base target sequence, RSEARCH will not

attempt to form base pairs between the first and last base in the target. Instead,

it will (by default) only look at bases up to 100 bases5 away.

RSEARCH was used to attempt to match each of the structural elements

located against every other element. Utilising a 16-way subset of a Linux-

based Opteron cluster, runs typically took a week.

5Double the query length

106



The output was then processed in an attempt to identify families of homol-

ogous elements. Firstly, each high-scoring RSEARCH match was simplified

into a pair of genes – the subject and the query. Each pair was then checked

in order to ensure that the same match was obtained when the role of the se-

quences was reversed.

As a consequence of this, each gene could be considered to be connected to

a number of other genes. A threshold was picked, and any gene with fewer

connections than this threshold was removed. The removal of a gene may

have reduced another gene’s number of connections below the threshold – as

a consequence, the process was iterated until the number of genes remaining

stabilised. This tended to form small clusters of genes with high levels of inter-

connection and structural similarity.

This was performed for two significance levels of RSEARCH results. Ex-

amining RSEARCH results of 95% significance or more generated 78 groups,

with a mean size of 4 and a standard deviation of 3.2. Looking at results with

99.9% significance or more generated 23 groups, with a mean size of 3 and a

standard deviation of 1.8. In both cases, the median number of members was

2.

Each family was then queried via Flybase’s bulk query interface and the set

of molecular function GO annotations inspected by eye. The largest families

were characterised by members containing highly repetitive DNA and having

no functional relationship.

Two more interesting families were noted, each containing only two mem-

bers. The first consisted of CG4819 and CG31054, both believed to be involved

in the small nuclear ribonucleoprotein complex. These were both found to con-

tain a 44 base stem-loop structure with a high degree of conservation between
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the two transcripts. However, closer examination revealed that the CG31054

transcript is duplicated in its entirety in the CG4849 5’ UTR. This suggests ei-

ther a recent duplication event or an annotation error of some description.

The second family consisted of CG9455 and CG9456. In this case. closer

examination revealed that the conserved structure is contained within a region

of overlap between the two transcripts (Misra et al., 2002).

The issue appears to be that RSEARCH and other similar algorithms are

concerned with finding near-precise matches for as much of the query struc-

ture as possible. This works well when trying to find precisely defined RNA

structural elements, but less well when only small subsets of the features in

the structure are necessary for functionality. Rather than work on modifying

these complex algorithms, it was decided to focus on a simple, straightfor-

ward approach to exposing the information that was considered important in

the structure.

A novel mechanism for identifying homologous structure

Cohen et al. (2005) showed that much of the functionality of the K10 local-

isation element is dependent on the shape of the minor groove of the helical

section of the stem loop structure. To a first approximation, U:A and A:U base-

pairs are identical to each other in this respect, and the same applies to C:G and

G:C basepairs.

Looking purely at the helical section of the structure, it is therefore possible

to assign each base pair into one of three categories:

• U:A or A:U

• C:G or G:C
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• non Crick-Watson pairing

In order to investigate this more closely, a method was developed to de-

scribe each RNA structural element in terms of the shape of its minor groove.

Software was written to take each element and its accompanying structure.

The sequences was then aligned to the structure and each base pair identified.

Starting at the base of the stem, each base pair was then encoded as a number.

A:U or U:A pairs were assigned a value of 1, C:G and G:C pairs a value of 2

and any other pairs a value of 3.

Figure 6.2: The stem structure of the K10 TLS. Numbers represent the minor
groove shape of the structure.

Cohen et al determined that the 3rd, 5th, 8th and 10th base pairs of the

K10 helix impaired localisation if mutated in such a way as to alter the shape

of the minor groove, while reducing the stem length below 14 base pairs also

impaired functionality. This can be written as

....2.1..1.1..

where a . represents an unconstrained base pair, a 1 represents a base pair

that must be A:U or U:A, and a 2 a base pair that must be C:G or G:C. This is

semantically identical to a Unix regular expression, and as such a database of

sequences tagged with these “structural alphabets” can be queried for matches

using tools such as grep.

Out of around 140,000 RNA structural elements across the entirety of the D.

melanogaster transcriptome, 20,681 match this query. This is a large proportion
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of the genome, and so this filtering is not obviously helpful in itself.

In order to improve the usefulness of this technique, the primary sequence

of each element was BLASTed against the D. pseudoobscura genome. D. pseu-

doobscura was chosen for two reasons:

* It diverged from D. melanogaster 40-60 million years ago, and so has had

ample opportunity for non-functional sequence to undergo significant change.

* D. pseudoobscura has the most completely sequenced genome of any of the

non-Melanogaster Drosophilids.

It was assumed that any functional element should show structural con-

servation in D. pseudoobscura, along with primary sequence conservation. The

top D. pseudoobscura hit for each D. melanogaster query was folded using the

Zucker algorithm and then converted into the same structural alphabet as pre-

viously. These were then checked against the original query to ensure that the

conserved primary sequence folded into a structure that matched the original

search conditions.

This procedure reduced the number of matches to 56, corresponding to 43

unique genes 6. Unsurprisingly, this included both K10 and ORB.

The marked genes were examined for GO annotations. Several were found

to be interesting, and perhaps worthy of further investigation. As well as Orb

and K10, two other genes involved in dorso-ventral patterning were found:

Wingless and Dorsal. Five more genes were found to be involved in protein

localisation, seven were involved in cytoskeletal organisation and eight in neu-

rogenesis.

This information was collated with GOstat (Beissbarth and Speed, 2004), a

tool which examines the annotation on a list of provided genes and provides
6In the case of multiple transcripts, each was searched independently and would therefore

count towards the former score
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information as to which annotation terms are over or under-represented. GO-

stat showed several tags as significantly overrepresented7, including dorso-

ventral patterning, cytoskeletal organisation and neurogenesis (table 6.1).

7These statistics were generated without Orb and K10 being included in the list of query
genes, as their inclusion was guaranteed in the first place. Including them results in an in-
creased significance of several hits, as seen in table 6.2
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6.5 Conclusions

The combination of structural analysis, conservational genomics and searches

based on the minor groove shape of the K10 TLS have revealed a number of

genes. Functional analysis (based on GO annotation) provides an indication

that these a marginally significant overrepresentation of certain functional an-

notations. If the conserved structure is functional, the similarity to the minor

groove shape of the K10 TLS could indicate an interaction with the same local-

isation pathway as K10 and ORB. Experimental examination of the localisation

of these genes in oocytes would be required to demonstrate this.
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Table 6.1: GOstat results, without K10 and ORB
GO Annotation Genes P
neurogenesis KEK2 DL OTK TM1 NERFIN-1 WG CG31694 HIW 0.0306
morphogen activity WG DL 0.0306
Notch binding WG DL 0.0306
cytoskeleton organization
and biogenesis

KHC-73 CG3121 CHER WG DL BTV ACT5C 0.0477

dorsal/ventral pattern for-
mation, imaginal disc

WG DL 0.0477
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Table 6.2: GOstat results
GO Annotation Genes P
dorsal/ventral pattern for-
mation

WG DL ORB FS(1)K10 0.017

neurogenesis KEK2 DL OTK TM1 NERFIN-1 WG CG31694 HIW 0.017
morphogen activity WG DL 0.017
Notch binding WG DL 0.017
oocyte axis determination DL ORB TM1 FS(1)K10 0.017
axis specification WG DL ORB TM1 FS(1)K10 0.017
female gamete generation DL ORB TM1 FS(1)K10 0.017
dorsal/ventral pattern for-
mation, imaginal disc

WG DL 0.0296

cytoskeleton organization
and biogenesis

KHC-73 CG3121 CHER WG DL BTV ACT5C 0.0296

ovarian follicle cell devel-
opment (sensu Insecta)

CHER WG DL FS(1)K10 0.0296

oogenesis (sensu Insecta) CHER WG DL ORB TM1 FS(1)K10 0.0296
oogenesis CHER WG DL ORB TM1 FS(1)K10 0.0296
dorsal/ventral axis specifi-
cation

DL ORB FS(1)K10 0.0296

anterior/posterior axis
specification

WG DL ORB TM1 0.0296

anterior/posterior pattern
formation

WG DL ORB TM1 0.0335

female gamete generation CHER WG DL ORB TM1 FS(1)K10 0.0335
intracellular mRNA local-
ization

ORB TM1 FS(1)K10 0.0335

protein localization KHC-73 CHER BTV ORB CG31158 FS(1)K10 CYP33 0.0335
pattern specification WG DL ORB TM1 FS(1)K10 0.0335
gametogenesis CHER WG DL ORB TM1 FS(1)K10 ACT5C 0.0335
cytoskeleton KHC-73 CG3121 BTV TM1 ACT5C 0.0335
oocyte axis determination
(sensu Insecta)

ORB TM1 FS(1)K10 0.0335

oocyte construction (sensu
Insecta)

ORB TM1 FS(1)K10 0.0335

sexual reproduction CHER WG DL ORB TM1 FS(1)K10 ACT5C 0.0335
reproduction CHER WG DL ORB TM1 FS(1)K10 ACT5C 0.0335
structural constituent of cy-
toskeleton

KHC-73 CG3121 CHER BTV ACT5C 0.0335

ommatidial rotation WG DL 0.0335
oocyte anterior/posterior
axis determination

DL ORB TM1 0.035
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Chapter 7

Experimental validation of

predicted localisation elements
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7.1 Introduction

The sheer number of identified structural elements in D. melanogaster (some

140,000) is sufficiently large that picking some arbitrary subset of them may

produce apparently significant results. As a consequence, it was felt that ex-

perimental validation was required to determine whether the set of putatively

localised genes described in chapter 6 actually demonstrated any subcellular

localisation. Based on the hypothesis that the minor groove motif of the k10

TLS is responsible for the correct localisation of k10 and Orb, it would be ex-

pected that these transcripts would also be localised in a similar manner. Ex-

amining D. melanogaster oocytes with in situ staining should demonstrate any

subcellular localisation, if present.

116



7.2 Methods

Of the 41 unique genes identified in chapter 6, 29 were identified as being ex-

pressed in ovarian tissue using data from FlyAtlas (Chintapalli et al., 2007)

and are show in table 7.1. The largest exon in each of these genes was iden-

tified and primers designed using the Primer3 package (Rozen and Skaletsky,

2000) to produce products of between 500 and 1000 bases. For each gene, one

primer was prefixed with the T3 promoter sequence and the other with the T7

promoter sequence.

Genomic DNA was extracted from D. melanogaster using the protocol de-

scribed in appendix A. This material was then used as the basis for 29 PCRs.

The PCR product consisted of exonic material prefixed with the T7 promoter

sequence on one strand and the T3 promoter sequence on the other. Single-

stranded RNA probes were then grown from each strand of the product, pro-

ducing a set of 29 antisense probes and 29 sense control probes.

Ovaries were extracted from a number of female D. melanogaster from the

Oregon R strain and separated into individual egg chambers. In-situ stain-

ing was then performed using the protocol described in appendix A and the

stained egg chambers examined under a light microscope for evidence of lo-

calisation.
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CG2519
CG3173
CG3218
CG3570
CG3937
CG4027
CG4886
CG4898
CG5452
CG6438
CG6667
CG6818
CG7865
CG8002
CG8183
CG8291
CG8967
CG10868
CG11107
CG11416
CG11614
CG11897
CG11986
CG13148
CG31133
CG31158
CG31694
CG32592
CG32791

Table 7.1: Genes identified through structural screening and positively identi-
fied as being expressed in ovarian tissue
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Figure 7.1: Typical negative control staining, in this case using a sense CG32592
probe. Stage 10 oocyte – at this stage, k10 is still localised to the anterior of the
oocyte.

7.3 Results

Negative controls were performed using the sense versions of the generated

probes. All showed no evidence of staining. Figure 7.1 shows a typical exam-

ple. k10 was used as a positive control. Figure 7.2 shows anterior localisation

of staining, consistent with the expected localisation pattern.

Results from other probes could be split into two categories – those which

showed ubiquitous staining (eg figure 7.3)and those which showed no stain-

ing (eg figure 7.4). No localised staining was observed. These results are sum-

marised in table 7.2.
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Figure 7.2: k10 localisation. Stage 9 oocyte. Probe is DIG-labeled anti-k10, with
NBT/BCIP staining. Arrow indicates anterior localisation of k10 transcript.
Image has been enhanced for clarity.
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Figure 7.3: Ubiquitous staining. Stage 9 oocyte. Probe is DIG-labeled anti-
CG8183, with NBT/BCIP staining. Arrow indicates nucleus of nurse cell,
showing weakened staining.
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Figure 7.4: Absence of staining. Stage 10 oocyte. Probe is DIG-labeled anti-
CG3570, with NBT/BCIP staining. Image colours have been inverted for clar-
ity.

122



Gene Staining
CG2519 None
CG3173 None
CG3218 Anterior localisation
CG3570 None
CG3937 Ubiquitous
CG4027 Ubiquitous
CG4886 Ubiquitous
CG4898 Ubiquitous
CG5452 None
CG6438 Ubiquitous
CG6667 Ubiquitous
CG6818 None
CG7865 None
CG8002 None
CG8183 Ubiquitous
CG8291 Ubiquitous
CG8967 None
CG10868 Anterior localisation
CG11107 None
CG11416 Ubiquitous
CG11614 Ubiquitous
CG11897 Ubiquitous
CG11986 None
CG13148 Ubiquitous
CG31133 None
CG31158 None
CG31694 None
CG32592 Ubiquitous
CG32791 None

Table 7.2: Staining patterns of experimentally tested genes
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7.4 Discussion

The failure to observe subcellular localisation that mirrors that of k10 indicates

that the presence of a structural element containing the consensus structure

described in chapter 6 is not sufficient to obtain this localisation pattern.

One of the supporting aspects of the original RNA structural analysis was

the GOstat analysis. As with all statistical analysis, the results must be inter-

preted carefully. Performing the GOstat analysis again with the subset of the

genes that are expressed in the ovaries gives no hits that are significant at the

5% level if k10 and orb are excluded, and the results with K10 are shown in

table 7.3.

Table 7.3: GOStat results

Go Annotation Genes P

oocyte anterior/posterior

axis determination

TM1 ORB DL FS(1)K10 0.0106

oocyte axis determination TM1 ORB DL FS(1)K10 0.0106

oocyte construction TM1 ORB DL FS(1)K10 0.0106

oocyte development TM1 ORB DL FS(1)K10 0.0106

oocyte differentiation TM1 ORB dl FS(1)K10 0.0106

cell development TM1 OTK ORB HIW ACT5C CHER FS(1)K10 DL 0.0106

anterior/posterior axis

specification

TM1 ORB DL FS(1)K10 0.0106

localization TM1 OTK ORB ACT5C CHER KHC-73 CYP33 DL

FS(1)K10

0.0106

germarium-derived egg

chamber formation

CHER ORB DL 0.0106
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pole plasm mRNA localiza-

tion

TM1 ORB FS(1)K10 0.0106

pole plasm RNA localiza-

tion

TM1 ORB FS(1)K10 0.0106

protein binding CHER KHC-73 TM1 PNGASE OTK ORB HIW DL 0.0109

germ cell development TM1 ORB DL FS(1)K10 0.0109

pole plasm assembly TM1 ORB FS(1)K10 0.0109

dorsal/ventral axis specifi-

cation

ORB DL FS(1)K10 0.0109

anterior/posterior pattern

formation

TM1 ORB DL FS(1)K10 0.0109

intracellular mRNA local-

ization

TM1 ORB FS(1)K10 0.014

cell differentiation TM1 OTK ORB HIW ACT5C CHER FS(1)K10 DL 0.0144

cellular developmental

process

TM1 OTK ORB HIW ACT5C CHER FS(1)K10 DL 0.0163

axis specification TM1 ORB DL FS(1)K10 0.0163

dorsal/ventral pattern for-

mation

ORB DL FS(1)K10 0.0207

RNA localization TM1 ORB FS(1)K10 0.0216

cytoplasm organization

and biogenesis

TM1 ORB FS(1)K10 0.025

cellular component organi-

zation and biogenesis

TM1 OTK ORB HIW ACT5C CHER KHC-73 CYP33

FS(1)K10 DL

0.025

gamete generation ACT5C CHER TM1 ORB DL FS(1)K10 0.025
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macromolecule localiza-

tion

CHER TM1 ORB FS(1)K10 0.025

sexual reproduction ACT5C CHER TM1 ORB DL FS(1)K10 0.025

pyrimidine ribonucle-

oside monophosphate

biosynthetic process

DNK 0.025

deoxynucleoside kinase ac-

tivity

DNK 0.025

hatching behavior AMON 0.025

Many of these results are more significant than previously. This is due to

the sample set being smaller, but still being effectively constrained to include

k10 and orb. A more recent version of GOStat includes a correction method

(Benjamini and Yekutieli, 2001) that accounts for dependencies between re-

sults, such as those introduced by the constraint on k10 and orb. Applying this

correction to the same dataset reveals no statistically significant results.

However, the occurrence of Tropomyosin and Dorsal in the dataset is still

worthy of further investigation. Erdelyi et al. (1995) demonstrated that Tropomyosin

is vital for anterior-posterior axis formation, but, in contrast to k10, Tropomyosin

is localised to the posterior of the embryo (Hales et al., 1994). Further, this lo-

calisation appears limited to the embryo – it appears ubiquitously in the oocyte

(above data, Hales et al. (1994)). Similarly, Dorsal is a maternally expressed

mRNA involved in axis formation, but undergoes protein localisation rather

than mRNA localisation (Rushlow et al., 1989).

A remaining question concerns the disparity between the observed lack of

expression of certain genes despite FlyAtlas indicating that they are upregu-
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lated in ovarian tissue. Plausible explanations for this include the expression

being limited to ovarian tissue other than the oocytes or the fact that the FlyAt-

las protocol requires the collection of 1500ng of RNA before microarray anal-

ysis. This may result in the protocol being more sensitive than in-situ analysis

in cases where the expression is low.
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7.5 Conclusions

Performing in situ staining did not successfully demonstrate that the presence

of a conserved structural element with a minor groove pattern similar to that

of the k10 TLS is sufficient to obtain a localisation pattern similar to that of k10

and orb. More recent research has indicated TLS recognition is mediated by

Egalitarian (Dienstbier et al., 2009), a dynein binding protein. Egalitarian has

previously been implicated in the localisation of other mRNAs that lack the

consensus sequence described here (Bullock and Ish-Horowicz, 2001). This

strongly implies that the minor groove consensus sequence in the k10 and orb

localisation sequences is a function of sequence similarity constrained by the

requirement to form a stable stem structure, rather than a direct result of func-

tional conservation. There is thus no reason to believe that the minor groove

pattern is sufficient for localisation – the failure to observe localisation in other

transcripts carrying it is therefore unsurprising.
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Chapter 8

Conclusion

This thesis has described multiple techniques utilised in attempting to locate

novel functional elements in D. melanogaster, utilising comparative analysis as

a mechanism for determining the likelihood of the significance of these ele-

ments. Two novel techniques have been described, along with validation of

the discovery of two previously unannotated tRNAs and strong indications

that a dataset of putative microRNAs contains functional sequences.

This thesis has concentrated on the utility of comparative genomics in pro-

viding further information about each of the putative elements located. In

chapter 2, this demonstrated the apparent recent accumulation of a variant of

the canonical drosophila 2S rRNA sequence in D. melanogaster along with ev-

idence for a strain-specific mutation. The comparative analysis also demon-

strated the plausibility of these mutations by showing similar (though not

identical) accumulations in other species.

Despite these discoveries, the primary aim of chapter 2 was to investigate

the quality level of the Solexa sequencing in order to provide a solid dataset

for the following chapters. This was achieved by careful examination of se-
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quences generated at two different stages of the sequencing process, allowing

a fine-grained analysis of the sources of error. A third of the error appears

to be derived from the preparation of the sequences, with the remaining two

thirds being introduced by the sequencing itself. Both these error rates are

low, providing confidence in the correctness of peaks analysed in the follow-

ing chapters.

In chapter 3, an analysis of the alignment profile generated in chapter 2

was carried out with the aim of locating tRNA genes. This demonstrated that

the expression profile of tRNA genes could be distinguished from that of most

other expressed regions of the genome. In combination with existing tRNA

prediction techniques, this provided robust evidence for the existence of two

previously unannotated tRNA genes. Yet more evidence was provided by the

new genes being present in the conserved syntenic region of all 11 other se-

quenced species. This more traditional use of conservational analysis makes

use of the fact that well-conserved sequences are highly likely to be functional.

Similar techniques were put to use in chapter 4, where the measuring of

conservation was used to judge whether an analysis of experimentally ob-

tained sequence data predicted genuine microRNAs. The results were con-

sistent with the dataset containing some number of novel microRNAs, though

indicated that they were likely to be restricted to species more closely related

to D. melanogaster than D. pseudoobscura. This enrichment may an artifact of

the use of conservational analysis in previous studies of microRNA, demon-

strating the risks of relying on this technique in order to reduce false positives

from other prediction techniques. While the presence of conservation can be

strongly indicative of functionality, its absence does not inherently indicate

that the sequence in question has no function. Sequencing a range of closely
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related species makes it less likely that genuine functional elements will be ig-

nored due to lack of conservation, but does not remove the possibility entirely.

While conservational analysis is usually explained in terms of primary se-

quence conservation, it also follows that other functional features will also be

conserved. Chapter 5 uses conservational analysis to judge the significance of

gene arrangement, rather than examining the conservation of the genes them-

selves. This demonstrated that the pattern of conservation was essentially con-

sistent with the gain and loss of nested genes being a random process, but

found that the only genes with a conserved nesting arrangement in both D.

melanogaster and humans had a plausible functional relationship. It is there-

fore possible that a subset of nesting arrangements are functional.

Finally, chapters 6 and 7 attempted to use conservational analysis to iden-

tify structural mRNA elements that were considered likely to be functional,

making use of the fact that secondary structure conservation implies primary

sequence conservation in closely related species. Experimental investigation

failed to demonstrate any link between these elements and their predicted

function, indicating another risk of conservational analysis – the presence of

conservation may be strongly indicative of a functional relationship, but does

not guarantee that there is one. In combination with experimental or well-

tested prediction algorithms, however, comparative genomics can provide a

great deal of information.

This thesis has demonstrated that conservational genomics is a powerful

tool for both the validation and rejection of putative functional elements. This

makes it ideal for use in judging the efficacy of novel techniques for predicting

the presence of these elements, providing the potential for rapid improvement

in computational analysis tools.
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Appendix A

Protocols

A.1 Preparing microRNA samples for Solexa sequenc-

ing

This protocol was provided by Illumina, Inc.

1. Purifying 20-30nt size-range from 10ug of Drosophila total RNA (1ug/uL)

(a) Remove the comb from the 15% TBU gel and rinse out the wells

thoroughly with 1X TBE.

(b) Pre-run the 15% TBU gel for 15-30 min at 200V, and wash the wells

using 1X TBE.

(c) Mix 10µL (10µg) of total RNA with 10µL of 2X formamide loading

dye in a 200uL PCR tube. Heat the sample at 65C for 5 min, spin

down, and load the sample into one well.

(d) Mix 2µL of 10bp ladder with 2µL of 2X loading dye in another 200uL

PCR tube, and load into another well without heating.
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(e) Run the gel at 200V for 1 hour, and stain the gel with 1X TBE / EtBr

for 2 min.

(f) Cut out the corresponding gel band (20-30nt) and transfer to a 0.5mL

tube with 4-5 pores punctured by a 21 gauge needle on the bottom.

(g) Set this tube into a 2ml round-bottom Eppendorf tube, and spin the

gel through the hole into the 2mL tube at full speed for 2 min.

(h) Add 300µL of 0.3M NaCl to the tube, and elute the DNA by rotating

the tube gently at room temperature for 4 hours.

(i) Transfer the elute and the gel debris onto the top of a Spin-X filter,

and spin at full speed for 2 minutes.

(j) Add 750 µL of 100% EtOH and 3µL of glycogen to the sample, and

incubate at -80C for 30 minutes.

(k) Spin down at˜14K rpm for 25 minutes at 4C in a microcentrifuge.

(l) Carefully remove supernatant and wash pellet with 750 µL of room

temperature 75% EtOH. Allow the RNA pellet to air dry then dis-

solve the RNA in total of 4.7 µL of DEPC-treated water.

2. 5 prime Adaptor Ligation and Purification

(a) Set up the 5 prime Adaptor ligation reaction:
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(b)

Reagent Amount

Purified 20-30nt RNA 4.7 µL

5pmole/µL 5 primeRNA Adaptor (28nt) 1.3 µL

10X Ligation Buffer 1 µL

T4 RNA Ligase (Ambion, 5U/uL) 2 µL

RNase Out (Invitrogen) 1 µL

Total reaction volume (µL) 10 µL

(c) Set up the 5 prime Adaptor ligation reaction for mir168 control:

(d)

Reagent Amount

mir168 at 10pmole/µL 5 µL

100µM 5 primeRNA Adaptor (28nt) 2 µL

10X Ligation Buffer 1.1 µL

T4 RNA Ligase (Ambion, 5U/uL) 2 µL

RNase Out (Invitrogen) 1 µL

Total reaction volume (µL) 11.1 µL

(e) Incubate at room temperature for 6 hours.

(f) Stop reaction by adding 10 µL 2x Loading Dye. Heat sample/loading

buffer at 65C for 5 minutes prior to loading.

(g) Prerun the 15% TBU gel for 15-30 minutes at 200V. Wash the wells

with 1X TBE.

(h) Load 1µg (1µL) of 10bp DNA ladder (1µL of 10bp ladder + 1µL of

2X loading dye). Do not heat the ladder at 65C.

(i) Load the samples into other wells. Run gel at 200V for 1 hour. Stain

the gel with 1X TBE / EtBr.

(j) Cut out the corresponding gel band (40-60nt) and transfer to a 0.5mL

134



tube with 4-5 pores punctured by a 21 gauge needle on the bottom.

(k) Set this tube into a 2ml round-bottom Eppendorf tube, and spin the

gel through the hole into the 2mL tube at full speed for 2 min.

(l) Add 300µL of 0.3M NaCl to the tube, and elute the DNA by rotating

the tube gently at room temperature for 4 hours.

(m) Transfer the elute and the gel debris onto the top of a Spin-X filter,

and spin at full speed for 2 minutes.

(n) Add 750 µL of 100% EtOH and 3µL of glycogen to the sample, and

incubate at -80C for 30 minutes.

(o) Spin down at 1̃4K rpm for 25 minutes at 4C in a microcentrifuge.

(p) Carefully remove supernatant and wash pellet with 750 µL of room

temperature 75% EtOH. Allow the RNA pellet to air dry then dis-

solve the RNA in total of 5.4 µL of DEPC-treated water (for mir168

control, dissolve in 4 µL).

3. 3 prime Adaptor Ligation and Purification

(a) Set up the 3 prime Adaptor ligation reaction:

(b)

Reagent Amount

Purified 5 prime ligation product 5.4 µL

10pmole/µL 3 primeRNA Adaptor (24nt) 0.6 µL

10X Ligation Buffer 1 µL

T4 RNA Ligase (Ambion, 5U/µL) 2 µL

RNase Out 1 µL

Total reaction volume (µL) 10 µL

(c) Set up the 3 prime Adaptor ligation reaction for mir168 control:
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(d)

Reagent Amount

Purified 49nt oligo control prod 4 µL

100µM 3 primeRNA Adaptor (24nt) 2 µL

10X Ligation Buffer 1µL

T4 RNA Ligase (Ambion, 5U/µL) 2 µL

RNase Out 1 µL

Total reaction volume (µL) 10 µL

(e) Incubate at 20C for 6 hours.

(f) Stop reaction by adding 10 µL 2x Loading Dye. Heat sample/loading

buffer at 65C for 5 minutes prior to loading.

(g) Prerun the 10% TBU gel for 15-30 minutes at 200V. Wash the wells

with 1X TBE.

(h) Load 1µg (1µL) of 10bp DNA ladder (1µL of 10bp ladder + 1µL of

2X loading dye). Do not heat the ladder at 65C.

(i) Load the samples into other wells. Run gel at 200V for 1 hour. Stain

the gel with 1X TBE / EtBr.

(j) Cut out the corresponding gel band (70-90nt) and transfer to a 0.5mL

tube with 4-5 pores punctured by a 21 gauge needle on the bottom.

(k) Set this tube into a 2ml round-bottom Eppendorf tube, and spin the

gel through the hole into the 2mL tube at full speed for 2 min.

(l) Add 300µL of 0.3M NaCl to the tube, and elute the DNA by rotating

the tube gently at room temperature for 4 hours.

(m) Transfer the elute and the gel debris onto the top of a Spin-X filter,

and spin at full speed for 2 minutes.
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(n) Add 750 µL of 100% EtOH and 3µL of glycogen to the sample, and

incubate at -80C for 30 minutes.

(o) Spin down at 1̃4K rpm for 25 minutes at 4C in a microcentrifuge.

(p) Carefully remove supernatant and wash pellet with 750 µL of room

temperature 75% EtOH. Allow the RNA pellet to air dry then dis-

solve the RNA in total of 4.5µL of DEPC-treated water.

4. RT-PCR of small RNAs ligated with adaptors:

(a) Set up a reverse transcription reaction:

(b)

Reagent Amount

Purified ligated RNA 4.5 µL

100uM RT-Primer

(3 prime PCR primer) 0.5 µL

(c) Heat to 65C for 10 minutes, spin down to cool.

(d) Add following in order:

(e)

Reagent Amount

2.0 µL 5x first strand buffer

0.5 µL 12.5mM dNTP

1 µL 100 mM DTT

0.5 µL RNaseOut

(f) Heat to 48C for 3 min and then add 1.0 µL of Superscript II RT

(200U/µL).

(g) Incubate at 44C for 1 hour.

(h) Set up 50µL SOEPCR reactions from the RT samples
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(i)

Reagent Amount

RT Reaction 10

5X PCR Buffer 10

25mM dNTP 0.5

Sbs11-p5 0.5

25 uM 5 prime PCR Primer 0.5

25 uM 3 prime PCR Primer 0.5

Phusion (NEB) high fidelity DNA pol 0.5

Water 27.5

(j) Set up 50µL SOEPCR reactions from the mir168 control

(k)

Reagent Amount

RT Reaction 1

5X PCR Buffer 10

25mM dNTP 0.5

Sbs11-p5 0.5

25 uM 5 prime PCR Primer 0.5

25 uM 3 prime PCR Primer 0.5

Phusion (NEB) 0.5

Water 36.5

(l)

PCR temperature time

98C 30 sec

98C 10 sec

60C 30 sec for 15 Cycles of PCR

72C 15 sec

72C 10 min

(m) Carefully load 50µl of PCR products into 2 wells of 4̃12% TBE PAGE

138



gel. (NOT UREA) Electrophorese 45 minutes at 200V.

(n) Pry apart cassette, and stain the gel in TE /ethidium bromide in a

clean container for 2-3 minutes.

(o) Cut out 3̃75 bp band with a clean razor blade, and put band into

a 0.5ml Eppendorf tube whose bottom has been punctured by a 21

gauge needle.

(p) Set this tube into a 2ml round-bottom Eppendorf tube, and spin the

gel through the hole into the 2ml tube (2 min spin at full speed in

microfuge).

(q) Add 100 µl of 1×NEB to the gel, and elute the DNA by rotating the

tube gently at room temperature for 2 hours.

(r) Transfer the eluate and the gel debris onto the top of a Spin-X filter.

Spin the filter in the microfuge for 2 minutes at full speed..

(s) Add 1µl of Pellet Paint, 10µl of 3 M NaOAc and 325µl of 20C EtOH,

spin at 14K for 20 mins.

(t) Wash with 500µl of RT 70% EtOH, vacuum dry and resuspend in

10µl of EB solution (10mM tris-HCl, pH 8.5)

A.2 In-situ hybridisation of D. melanogaster oocytes

This protocol is an adaptation of the Berkeley Drosophila Genome Project 96-

well embryo in situ hybridisation protocol (BDGP, 2005).

1. Extract ovaries from female D. melanogaster and place in PBTween

2. Fix embryos by gently shaking in 50-50 mix of heptane and 4% formalde-

hyde/PBS fixative for 25 min.

139



3. Remove lower aqueous phase and replace with equal volume of methanol.

4. Wash 3× in methanol.

5. Store oocytes at -20 C25.

6. Rehydrate in 3:1 methanol:2.5% formaldehyde in 1× PBS for 2 min.

7. Rehydrate in 1:3 methanol:2.5% formaldehyde in 1× PBS for 5 min.

8. Post-fix in 2.5% formaldehyde in 1× PBS for 10 min.

9. Rinse 6x in PBT.

10. Add 3 ml of hybridization buffer

11. Incubate with shaking at 125 rpm on the Gyrotory shaker for at least 1 hr

at room temperature to pre-hybridize oocytes.

12. During pre-hybridization put 200 µl of hybridization buffer with dextran

sulfate into each well of a 96-well plate using multichannel pipette.

13. Add 2 µl of probe into each well

14. Mix thoroughly on a vortex mixer at maximum speed for 25 sec and cen-

trifuge at 4000 rpm for one minute.

15. Add 20 µl of oocytes into each well of a 96-well filter plate (using a mul-

tichannel pipette with wide opening tips)

16. Transfer the probes from the 96-well plate into the 96-well filter plate and

seal the filter plate with an aluminum foil sealer.

17. Incubate at 55C with shaking at 125 rpm on the Gyrotory shaker overnight

33.
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18. Add 100 µl of room temperature wash buffer.

19. Remove the hybridization-buffer, wash-buffer mix using vacuum; once

all the liquid is removed from the wells quickly turn off the vacuum.

20. Rinse 2× with wash buffer.

21. Incubate in wash buffer at 55C with shaking for 30 min with eight changes.

22. Incubate in wash buffer at 55C with shaking overnight.

23. Rinse in PBT.

24. Incubate in PBT at RT with shaking for 30 min; remove PBT.

25. Incubate in PBT, 5% goat serum, 1:2000 dilution Anti-Digoxigenin-AP

Fab Fragments at RT with shaking for 2 hrs.

26. Rinse 2× with PBT.

27. Incubate in PBT at RT with shaking 9× for 10 min each.

28. Rinse 2× with AP buffer.

29. Wash in AP buffer at RT for 5 min; remove AP buffer.

30. Add developing solution

31. Incubate with shaking until desired colour development is achieved (about

75 min); remove developing solution by vacuum aspiration.

32. Rinse 3× in PBT to stop the color reaction.

33. Rinse 6x in ethanol.

34. Rinse in PBT.
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35. Add 70% glycerol.

36. Store at 4C.

37. Check individual wells on the plate under a low power magnification

microscope.

38. Oocytes are ready to be photographed.
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